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Chapter 5

Performance prediction in

Information Retrieval

Information retrieval performance prediction has been mostly addressed as a query
performance issue, which refers to the performance of an information retrieval sys-
tem in response to a specific query. It also relates to the appropriateness of a query as
an expression of the user’s information needs. In general, performance prediction
methods have been classified into two categories depending on the used data: pre-
retrieval approaches, which make the prediction before the retrieval stage using query
features, and post-retrieval approaches, which use the rankings produced by a re-
trieval engine. In particular, the so-called clarity score predictor — of special interest
for this thesis — has been defined in terms of language models, and captures the am-
biguity of a query with respect to the utilised document collection, or a specific result
set.

In this chapter we provide an overview of terminology, techniques, and evalua-
tion related to performance prediction in Information Retrieval. In Section 5.1 we
introduce terminology and foundamental concepts of the performance prediction
problem. In Section 5.2 we describe the different types of performance prediction
approaches, which are mainly classified in the two categories mentioned above: pre-
retrieval and post-retrieval approaches. Then, in Section 5.3 we provide a thorough
analysis on the use of clarity score as a performance prediction technique, including
examples, adaptations, and applications found in the literature. Finally, in Section 5.4
we introduce the general methodology used to evaluate performance predictors,

along with the most common methods to measure their quality.
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5.1 Introduction

Performance prediction has received little attention, if any, to date in the Recom-
mender Systems field. Our research, however, finds a close and highly relevant refer-
ence in the adjacent Information Retrieval discipline, where performance prediction
has gained increasing attention since the late 90’s, and has become an established
research topic in the field. Performance prediction finds additional motivation in
personalised recommendation, inasmuch the applications they are integrated in may
decide to produce recommendations or hold them back, delivering only the suffi-
ciently reliable ones. Moreover, the ability to predict the effectiveness of individual
algorithms can be envisioned as a strategy to optimise the combination of algorithms
into ensemble recommenders, which currently dominate the field — rarely if ever are
individual algorithms used alone in working applications, neither are they found indi-
vidually in the top ranks of evaluation campaigns and competitions (Bennett and
Lanning, 2007).

In Information Retrieval performance prediction has been mostly addressed as a
query performance problem (Cronen-Townsend et al., 2002). Query performance
refers to the performance of an information retrieval system in response to a particu-
lar query. It also relates to the appropriateness of a query as an expression of a user’s
information needs. Dealing effectively with poorly-performing queries is a crucial
issue in Information Retrieval since it could improve the retrieval effectiveness sig-
nificantly (Carmel and Yom-Tov, 2010).

In general, performance prediction techniques can be useful from different per-
spectives (Zhou and Croft, 2006; Yom-Tov et al., 2005a):

e From the user’s perspective, it provides valuable feedback that can be used to

direct a search, e.g. by rephrasing the query or suggesting alternative terms.

e From the system’s perspective, it provides a means to address the problem of
information retrieval consistency. The consistency of retrieval systems can be
addressed by distinguishing poorly performing queries. A retrieval system may
invoke different retrieval strategies depending on the query, e.g. by using query
expansion or ranking functions based on the predicted difficulty of the query.

e From the system administrator’s perspective, it may let identify queries related
to a specific subject that are difficult for the search engine. According to such
queries, the collection of documents could be extended to better answer insuf-

ficiently covered topics.

e From a distributed information retrieval’s perspective, it can be used to decide
which search engine (and/or database) to use, or how much weight give to dif-

ferent search engines when their results are combined.
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Specifically, the performance prediction task in Information Retrieval is formal-
ised based on the following three core concepts: performance predictor, retrieval
quality assessment, and predictor quality assessment. In this context, the per-
formance predictor is defined as a function that receives the query (and the result list
D, retrieved by the system, the set of relevant documents R, collection statistics C,
etc.), and returns a prediction of the retrieval quality for that query. Then, by means
of a predictor quality assessment method, the predictive power of the performance
predictor is estimated.

Based on the notation given in (Carmel and Yom-Tov, 2010), the problem of
performance prediction consists of estimating a true retrieval quality metric u(q)
(retrieval quality assessment) of an information retrieval system for a given query q.

Hence, a performance predictor f(q) has the following general form:

A(q) < ¥(q,Rq, Dg, C) (5.1)

The prediction methods proposed in the literature establish different functions
Y, and use a variety of available data, such as the query’s terms, its properties with
respect to the retrieval space (Cronen-Townsend et al., 2002), the output of the re-
trieval system — i.e., Dg and R, — (Carmel et al., 2006), and the output of other sys-
tems (Aslam and Pavlu, 2007).

According to whether or not the retrieval results are used in the prediction proc-
ess, such methods can be classified into pre-retrieval and post-retrieval approaches,
which are described in Sections 5.2.1 and 5.2.2, respectively. Another relevant dis-
tinction is based on whether the predictors are trained or not, but this classification is
less popular, and will not be considered here.

Moreover, the standard methodology to measure the effectiveness of perform-
ance prediction techniques (that is, the predictor quality assessment method) consists
of comparing the rankings of several queries based on their actual precision — in
terms of a an evaluation metric such as MAP — with the rankings of those queries
based on their performance scores, i.e., their predicted precision. In Section 5.4 we
detail this methodology, along with several techniques for comparing the above rank-
ngs.

5.1.1 Notion of performance in Information Retrieval

In order to identify good performance predictors, validating or assessing their poten-
tial, we first have to define metrics of actual performance. Performance metrics and
evaluation have been a core research and standardisation area for decades in the In-
formation Retrieval field. In this section we introduce and summarise the main per-
formance metrics and evaluation methodologies developed in the field.

The notion of performance in general, and in Information Retrieval in particular,

leads itself to different interpretations, views and definitions. A number of methods
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for measuring performance have been proposed and adopted (Hauff et al., 2008a;
Hauff, 2010), the most prominent of which will be summarised herein; see (Baeza-
Yates and Ribeiro-Neto, 2011) for an extended discussion.

As a result of several decades of research by the Information Retrieval commu-
nity, a set of standard performance metrics has been established as a consensual ref-
erence for evaluating the goodness of information retrieval systems. These metrics
generally require a collection of documents and a query (or alternative forms of user
input such as item ratings), and assume a ground truth notion of relevance — tradi-
tional notions consider this relevance as binary, while others, more recently pro-
posed, consider different relevance degrees.

One of the simplest and widespread performance metrics in Information Re-
trieval is precision, which is defined as the ratio of retrieved documents that are
relevant for a particular query. In principle, this definition takes all the retrieved
documents into account, but can also consider a given cut-off rank as the precision
at n or P@n, where just the top-n ranked documents are considered. Other related
and widespread metric is recall, which is the fraction of relevant documents retrieved
by the system. These two metrics are inversely related, since increasing one generally
reduces the other. For this reason, usually, they are combined into a single metric —
e.g. the F-measure, and the Mean Average Precision or MAP —, or the values of
one metric are compared at a fixed value of the other metric — e.g. the precision-
recall curve, which is a common representation that consists of plotting a curve of
precision versus recall, usually based on 11 standard recall levels (from 0.0 to 1.0 at
increments of 0.1).

An inherent problem of using MAP for poorly performing queries, and in gen-
eral of any query-averaged metric, is that changes in the scores of better-performing
queries mask changes in the scores of poorly performing queries (Voorhees, 2005b).
For instance, the MAP of a baseline system in which the effectiveness is 0.02 for a
query A, and 0.40 for a query B, is the same as the MAP of a system where query A
doubles its effectiveness (0.04) and query B decreases a 5% (0.38). In this context, in
(Voorhees, 2005a) two metrics were proposed to measure how well information re-
trieval systems avoid very poor results for individual queries: the %no measure,
which is the percentage of queries that retrieved no relevant documents in the top 10
ranked results, and the area measure, which is the area under the curve produced by
plotting MAP(X) versus X, where X ranges over the worst quarter queries. These
metrics were shown to be unstable when evaluated in small sets of 50 queries
(Voorhees, 2005b). A third metric was introduced in (Voorhees, 2000): gmap, the
geometric mean of the average precision scores of the test set of queries. This metric
emphasises poorly performing queries while it minimises differences between larger

scores, remaining stable in small sets of queries (e.g. 50 queries) (Voorhees, 2005b).
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Nonetheless, despite the above metrics and other efforts made to obtain better
measures of query performance, MAP, and more specifically the Average Precision
per query, are still widely used and accepted. See (Carmel et al,, 2006; Cronen-
Townsend et al.,, 2002; Hauff et al., 2008b; He and Ounis, 2004; He et al., 2008;
Kompaoré et al.,, 2007; Zhao et al., 2008; Zhou and Croft, 2006; Zhou and Croft,
2007), among others.

Almost as important as the performance metric is the query type, which can be
related to the differerent user information needs (Broder, 2002). Most work on pet-
formance prediction has focused on the traditional ad-hoc retrieval task where query
performance is measured according to topical relevance (also known as content-
based queries). Some work — such as (Plachouras et al., 2003) and (Zhou and Croft,
2007) — has also addressed other types of queries such as named page finding queries,
i.e., queries focused on finding the most relevant web page assuming the queries con-
tain some form of the “name” of the page being sought (Voorhees, 2002a).

When documents are timed (e.g. a newswire system), we can also distinguish two
main types of queries that have been only partially exploited in the literature (Diaz
and Jones, 2004; Jones and Diaz, 2007): those queries that favour very recent docu-
ments, and those queries for which there are more relevant documents within a spe-
cific period in the past.

Finally, we note that most of the research ascribed to predict performance has
been focused not on predicting the “true” performance of a query (whatever that
means), but on discriminating those queries where query expansion or relevance
feedback algorithms have proved to be efficient from those where these algorithms
fail, such as polisemic, ambiguous, and long queries. These are typically called bad-zo-
expand queries (Cronen-Townsend et al., 2006), illustrating the implicit dependence
on their final application.

5.1.2 A taxonomy of performance prediction methods

Existing prediction approaches are typically categorised into pre-retrieval methods
and post-retrieval methods (Carmel and Yom-Tov, 2010). Pre-retrieval methods
make the prediction before the retrieval stage, and thus only exploit the query’s terms
and statistics about these terms gathered at indexing time. In contrast, post-retrieval
methods use the rankings produced by a search engine, and, more specifically, the
score returned for each document along with statistics about such documents and

their vocabulary.
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Category

Sub-category

Performance predictor (name and reference)

Pre-retrieval

Linguistics

Morphological, syntactic, semantic:
(Mothe and Tanguy, 2005), (Kompaoré et al., 2007)

Statistics

Coherency:
coherence (He et al., 2008);
term variance (Zhao et al., 2008)
Similarity:
collection query similarity (Zhao et al., 2008)
Specificity:
IDF-based (Plachouras et al., 2004), (He and Ounis, 2004);
query scope (He and Ounis, 2004), (Macdonald et al., 2005);
simplified clarity: (He and Ounis, 2004)
Term relatedness:
mutual information (Hauff et al., 2008a)

Post-retrieval

Clarity

Clarity (Cronen-Townsend et al., 2002),
(Cronen-Townsend et al., 2006)

Improved clarity (Hauff, 2010) (Hauff et al., 2008b)

Jensen-Shannon Divergence (Carmel et al., 2006)

Query difficulty (Amati et al., 2004)

Robustness

Cohesion:
clustering tendency (Vinay et al., 2006);
spatial autocorrelation (Diaz, 2007);
similarity (Kwok et al., 2004), (Grivolla et al., 2005)
Document perturbation:
ranking robustness (Zhou and Croft, 2006);
document perturbation (Vinay et al., 2006)
Query perturbation:
query feedback (Zhou and Croft, 2007);
autocorrelation (Diaz and Jones, 2004) (Jones and Diaz, 2007);
query perturbation (Vinay et al., 2006);
sub-query overlap (Yom-Tov et al., 2005a)
Retrieval perturbation: (Aslam and Pavlu, 2007)

Score analysis

Normalised Query Commitment: (Shtok et al., 2009)

Standard deviation of scores: (Pérez-lglesias and Araujo, 2009),
(Cummins et al., 2011)

Utility Estimation Framework: (Shtok et al., 2010)

Weighted Information Gain: (Zhou and Croft, 2007)

Table 5.1. Overview of predictors presented in Section 5.2 categorised according to the
taxonomy presented in (Carmel and Yom-Tov, 2010).

Pre-retrieval performance predictors do not rely on the retrieved document

set, but on other information mainly extracted from the query issued by the user,

such as statistics computed at indexing time (e.g. inverse term document frequen-

cies). They have the advantage that predictions can be produced before the system’s

response is even started to be elaborated, which means that predictions can be taken
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into account to improve the retrieval process itself. However, they have a potential
handicap with regards to their accuracy on the predictions, since extra retrieval effec-
tiveness cues available with the system’s response are not exploited (Zhou, 2007).
Pre-retrieval query performance has been studied from two main perspectives: based
on probabilistic methods (and more generally, on collection statistics), and based on
linguistic approaches. Most research on the topic has followed the former approach.
Some researchers have also explored inverse document frequency (IDF) and related
features as predictors, along with other collection statistics

Post-retrieval performance predictors, on the other hand, make use of the re-
trieved results. Broadly speaking, techniques in this category provide better predic-
tion accuracy compared to pre-retrieval performance predictors. However, many of
these techniques suffer from high computational costs. Besides, they cannot be used
to improve the retrieval strategies without a post-processing step, as the output from
the latter is needed to compute the predictions in the first place. In (Carmel and
Yom-Tov, 2010) post-retrieval methods are classified as follows: 1) clarity based
methods that measure the coherence (clarity) of the result set and its separability
from the whole collection of documents; 2) robustness based methods that estimate
the robustness of the result set under different types of perturbations; and 3) score
analysis based methods that analyse the score distribution of results.

Table 5.1 shows a number of representative approaches on performance predic-
tion, which will be described in the next section. These approaches are categorised
according to the taxonomy and sub-categories proposed in (Carmel and Yom-Tov,
2010). In the table we can observe that the statistics category has been the most
popular approach for pre-retrieval performance prediction. Several predictors have
been categorised in the robustness category, probably due to its broad meaning
(query, document, and retrieval perturbation). Finally, we note that recent effort from

the community has been focused on the score analysis category.

5.2 Query performance predictors

In this section we explain the distinct performance predictors proposed in the litera-
ture. As mentioned before, based on whether or not retrieval results are needed to
compute performance scores, predictors can be classified into two main types: pre-
retrieval and post-retrieval predictors. In the following we summarise some of the
approaches of each of the above types. For additional information, the reader is re-
ferred to (Carmel and Yom-Tov, 2010), (Hauff, 2010), and (Pérez Iglesias, 2012).
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5.2.1 Pre-retrieval predictors

Pre-retrieval performance predictors do not rely on the retrieved document set, and
exploit other collection statistics, such as the inverse document frequency (IDF). In
this context, performance prediction has been studied from three main perspectives:
based on linguistic methods, based on statistical methods, and based on probabilistic
methods.

Linguistic methods

In (Mothe and Tanguy, 2005) and (Kompaoré et al.,, 2007) the authors consider 16
query features, and study their correlation with respect to average precision and re-
call. These features are classified into three different types according to the linguistic

aspects they model:
e Morphological features:

o Number of words.
o Average word length in the query.

o Average number of morphemes per word, obtained using the CELEX’
morphological database. The limit of this method is the database coverage,
which leaves rare, new, and misspelled words as mono-morphemic.

o Average number of suffixed tokens, obtained using the most frequent
suffixes from the CELEX database (testing if each lemma in a topic is eli-
gible for a suffix from this list).

o Average number of proper nouns, obtained by POS (part-of-speech)
tagger’s analysis.

o Average number of acronyms, detected by pattern matching.
o Average number of numeral values, also detected by pattern matching.

o Average number of unknown tokens, marked by a POS tagger. Most
unknown words happen to be constructed words such as “mainstream-

2y ¢

ing”, “postmenopausal” and “multilingualism.”

¢ Syntactic features:

o Average number of conjunctions, detected through POS tagging.
o Average number of prepositions, also detected through POS tagging.

o Average number of personal pronouns, again detected through POS
tagging.

o Average syntactic depth, computed from the results of a syntactic ana-
lyser. It is a straightforward measure of syntactic complexity in terms of

7 CELEX, English database (1993). Available at www.mpi.nl/wotld/celex
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hierarchical depth; it simply corresponds to the maximum number of
nested syntactic constituents in the query.

o Average syntactic links span, computed from the results of a syntactic
analyser; it is the average pairwise distance (in terms of number of words)
between individual syntactic links.

e Semantic features:

o Average polysemy value, computed as the number of synsets in the
WordNet® database that a word belongs to, and averaged over all terms of
the query.

In the above papers the authors investigated the correlation between these fea-
tures, and precision and recall over datasets with different properties, and found that
the only feature that positively correlated with the two performance metrics was the
number of proper nouns. Besides, many variables did not obtain significant correla-

tions with respect to any performance metric.

Statistical methods

Inverse document frequency is one of the most useful and widely used magnitudes in
Information Retrieval. It is usually included in the information retrieval models to
properly compensate how common terms are. Its formulation usually takes an ad
hoc, heuristic form, even though formal definitions exist (Roelleke and Wang, 2008;
Aizawa, 2003; Hiemstra, 1998). The main motivation for the inclusion of an IDF
factor in a retrieval function is that terms that appear in many documents are not
very useful for distinguishing a relevant document from a non-relevant one. In other
words, it can be used as a measure of the specificity of terms (Jones, 1972), and thus
as an indicator of their discriminatory power. In this way, IDF is commonly used as a
factor in the weighting functions for terms in text documents. The general formula

of IDF for a term t is the following:
N
IDF(t) = log— (5.2)
N;

where N is the total number of documents in the system, and n; is the number of
documents in which the term t appears.

Some research work on performance prediction has studied IDF as a basis for
defining predictors. He and Ounis (2004) propose a predictor based on the standard
deviation of the IDF of the query terms. Plachouras et al. (2004) represent the qual-
ity of a query term by a modification of IDF where instead of the number of docu-

ments, the number of words in the whole collection is used (inverse collection term

8 WordNet, lexical database for the English language. Available at http://wordnet.princeton.edu/
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frequency, or ICTF), and the query length acts as a normalising factor. These IDF-
based predictors displayed moderate correlation with query performance.

Other authors have taken the similarity of the query into account. Zhao et al.
(2008) compute the vector-space based query similarity with respect to the collection,
considered as a large document composed of concatenation of all the documents.
Then, different collection query similarity predictors are defined based on the
SCQ values (defined below) for each query term, by summing, averaging, or taking

the maximum values:

SCQ(t) = (1 + log TF(t))-IDF(Y) (53)

The similarity of the documents returned by the query has also been explored in

the field. The inter-similarity of documents containing query terms is proposed in
(He et al.,, 2008) as a measure of coherence, by using the cosine similarity between
every pair of documents containing each term. Additionally, two predictors based on
the pointwise mutual information (PMI) are proposed in (Hauff et al., 2008a). The

PMI of two terms is computed as follows:

p(tll tZ)
p(t)p(ty)

where these probabilities can be approximated by maximum likelihood estimations,

PMI(t,, t,) = log (5.4

that is, based on collection statistics, where p(ty,t,) is proportional to the number
of documents containing both terms, and p(t) o< TF(t). In that paper a first predic-
tor is defined by computing the average PMI of every pair of terms in the query,
whereas a second predictor is defined based on the maximum value. The predictive

power of these techniques remains competitive, and is very efficient at run time.

Probabilistic methods

These methods measure characteristics of the retrieval inputs to estimate perform-
ance. He and Ounis (2004) propose a simplified version of the clarity score (see

next section) in which the query model is estimated by the term frequency in the

query:

Py
SCS = ) Py (W|Q)10gz% (5.5)
f TF
Pi(wlq) = %:P(WIC’) = %

where qtf is the number of occurrences of a query term W in the query, gl is the
query length, TF(w) is the number of occurrences of a query term in the whole col-

lection, and |V is the total number of terms in the collection.
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Despite its original formulation, where the clarity score can be considered as a
pre-retrieval predictor (Cronen-Townsend et al., 2002), Cronen-Townsend and col-
leagues use result sets to improve the computation time. For this reason, it is typically
classified as a post-retrieval predictor (Zhou, 2007; Hauff et al., 2008a), and thus, we
describe it with more detail in the next sections.

Kwok et al. (2004) build a query predictor using support vector regression, by
training classifiers with features such as document frequencies and query term fre-
quencies. In the conducted experiments they obtained a small correlation between
predicted and actual query performances. He and Ounis (2004) propose the notion
of query scope as a measure of the specificity of a query, which is quantified as the

percentage of documents that contain at least one query term in the collection, i.e.,
log(NQ /N ), being Ny the number of documents containing at least one of the query

terms, and N the total number of documents in the collection. Query scope has
shown to be effective in inferring query performance for short queries in ad hoc text

retrieval, but very sensitive to the query length (Macdonald et al., 2005).

5.2.2 Post-retrieval predictors

Post-retrieval performance predictors make use of the retrieved results, in contrast to
pre-retrieval predictions. Furthermore, computational efficiency is usually a problem
for many of these techniques, which is balanced by better prediction accuracy. In the
following we present the most representative approaches of each of the different

sub-categories described in Section 5.1.2: clarity, robustness, and score analysis.

Clarity-based predictors

Cronen-Townsend et al. (2002) define query clarity as a degree of (the lack of)
query ambiguity. Because of the particular importance and use of this predictor in the
findings of this thesis, we shall devote a whole section (Section 5.3) for a thorough
description and discussion about it. It is worth noting that the concept of query clar-
ity has inspired a number of similar techniques. Amati et al. (2004) propose the
query difficulty predictor to estimate query performance. In that work query per-
formance is captured by the notion of the amount of information (Infoprr) gained
after the ranking. If there is a significant divergence in the query-term frequencies
before and after the retrieval, then it is assumed that the divergence is caused by a
query that is easy to respond to. Infoprr showed a significant correlation with average
precision, but did not show any correlation between this predictor and the effective-
ness of query expansion. The authors hence concluded that although the perform-
ance gains by query expansion in general increase as query difficulty decreases, very

easy queries hurt the overall performance.
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Adaptations of the query clarity predictor such as the one proposed in (Hauff
et al., 2008b) will be discussed later in Section 5.3. Additionally, apart from the Kull-
back-Leibler divergence, the Jensen-Shannon Divergence on the retrieved document
set and the collection also obtains a significant correlation between average precision
and the distance measured (Carmel et al., 20006).

Robustness-based predictors

More recently, a related concept has been coined: ranking robustness (Zhou and
Croft, 2000). It refers to a property of a ranked list of documents that indicates how
stable a ranking is in the presence of wucertainty in its documents. The idea of predict-
ing retrieval performance by measuring ranking robustness is inspired by a general
observation in noisy data retrieval. The observation is that the degree of ranking ro-
bustness against noise is positively correlated with retrieval performance. This is be-
cause the authors assumed that regular documents also contain noise, if noise is inter-
preted as uncertainty. The robustness score performs better than, or at least as well
as, the clarity score.

Regarding document and query perturbation, Vinay et al. (2006) propose four
metrics to capture the geometry of the top retrieved documents for prediction: the
clustering tendency as measured by the Cox-Lewis statistic, the sensitivity to
document perturbation, the sensitivity to query perturbation, and the local in-
trinsic dimensionality. The most effective metric was the sensitivity to document
perturbation, which is similar to the robustness score. Document perturbation, how-
ever, did not perform well for short queries, for which prediction accuracy dropped
considerably when alternative state-of-the-art retrieval techniques (such as BM25 or a
language modelling approach) were used instead of the TF-IDF weighting (Zhou,
2007).

Several predictors have been defined based on the concept of query perturba-
tion. Zhou and Croft (2007) propose two performance predictors are defined based
on this concept specifically oriented for Web search. First, the Weighted Informa-
tion Gain predictor measures the amount of information gained about the quality of
retrieved results (in response to a query) from an imaginary state that only an average
document (represented by the whole collection) is retrieved to a posterior state that
the actual search results are observed. This predictor was very efficient and showed
better accuracy than clarity scores. The second predictor proposed in that work is the
Query Feedback, which measures the degree of corruption that results from trans-
forming @ to L (the output of the channel when the retrieval system is seen as a
noisy channel, i.e., the ranked list of documents returned by the system). The authors
designed a decoder that can accurately translate L back into a new query Q', where-
upon the similarity between the original query @ and the new query Q' is taken as a

performance predictor, since the authors interpreted the evaluation of the quality of
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the channel as the problem of predicting retrieval effectiveness. The computation of
this predictor requires a higher computational cost than the previous one, being a
major drawback of this technique.

Additionally, in (Diaz and Jones, 2004) and (Jones and Diaz, 2007) the authors
exploited temporal features (time stamps) of the document retrieved by the query.
They found that although temporal features are not highly correlated to perform-
ance, using them together with clarity scores improves prediction accuracy. Similatly,
Diaz (2007) proposes to use the spatial autocorrelation as a metric to measure spatial
similarities between documents in an embedded space, by computing the Moran’s
coefficient over the normalised scores of the documents. This predictor obtained
good correlations results, although the author explicitly avoided collections such as
question-answering and novelty related under the hypothesis that documents with
high topical similarity should have correlated scores and, thus, in those collections
the predictor would not work properly.

Other predictor was proposed in (Jensen et al., 2005), where visual features such
as document titles and snippets are used from a surrogate document representation
of retrieved documents. Such predictor was trained on a regression model with
manually labelled queries to predict precision at the top 10 documents in Web search.
The authors reported moderate correlation with respect to precision.

In (Yom-Tov et al., 2005a) two additional performance predictors are proposed.
The first predictor builds a histogram of the overlaps between the results of each
sub-query that agree with the full query. The second predictor is similar to the first
one, but is based on a decision tree (Duda et al., 2001), which again uses overlaps
between each sub-query and the full query. The authors apply these predictors to
selective query expansion detecting missing content, and distributed information
retrieval, where a search engine has to merge ranks obtained from different datasets.
Empirical results showed that the quality of the prediction strongly depends on the
query length.

The following predictors have been based on the cohesion of the retrieved
documents. Kwok et al. (2004) propose predicting query performance by analysing
similarities among retrieved documents. The main hypothesis of this approach is that
relevant documents are similar to each other. Thus, if relevant documents are re-
trieved at the top ranking positions, the similarity between top documents should be
high. The preliminary results, however, were inconclusive since negligible correla-
tions were obtained. A similar approach is proposed in (Grivolla et al., 2005), where
the entropy and pairwise similarity among top results are investigated. First, the en-
tropy of the set of the K top-ranked documents for a query was computed. In this
case it was assumed that the entropy should be higher when the performance for a
given query is bad. Second, the mean cosine similarity between documents was pro-

posed, using the base form of TF-IDF term weighting to define the document vec-
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tors. Correlation between average precision and the proposed predictors was not
consistent along the different systems used in the experiment, although the predic-
tors could still be useful for performance prediction, especially when used in combi-

nation.

Predictors based on score analysis

Finally, the last family of post-performance predictors analyses the score distribu-
tions of the results for each query. We have to note that the Weighted Information
Gain predictor (Zhou and Croft, 2007) explained above is sometimes categorised
into this group. In the following we present other predictors where the retrieved
scores are explicit in the predictor computation.

For instance, the Normalised Query Commitment (NQC) predictor (Shtok
et al., 2009) measures the standard deviation of the retrieval scores, and applies a

normalisation factor based on the score of the whole collection:

\[ 1/|Dg| Saen,(s(@) = 1g)” (5.6)
ls(e)l

where g is the mean score of results in Dy (the retrieved set of documents for a

NQC(q) =

query q). This predictor measures the divergence of results from their centroid, a
“pseudo non-relevant document” that exhibits a relatively high query similarity
(Carmel and Yom-Tov, 2010).

The utility estimation framework (UEF) was proposed in (Shtok et al., 2010)
to estimate the utility of the retrieved ranking. In this framework three methods have
to be specified to derive a predictor: a sampling technique for the document sets, a
representativeness measure for relevance-model estimates, and a measure of similar-
ity between ranked lists. Other authors have proposed approaches where standard
deviation does not need to be computed for all the document scores in the retrieved
results. Pérez-Iglesias and Araujo (2009) use a cutoff to decide how many documents
are considered in the standard deviation computation. Moreover, Cummins et al.
(2011) use different strategies to automatically select such cutoff.

Recently, Cummins (2012) has used Monte Carlo simulations to understand the
correlations between average precision and the standard deviation of the scores in
the head of a ranked list. The author found that the standard deviation of the list is
positively correlated with the mean score of relevant documents, which in turn is

positively correlated with average precision.
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5.3 Clarity score

Cronen-Townsend et al. (2002) defined clarity score for Web retrieval as a measure
of the lack of ambiguity of a particular query. More recently, it has been observed
that this predictor also quantifies the diversity of the result list (Hummel et al., 2012).
In this section we provide a deep analysis of this performance predictor since we
shall use it along the rest of this thesis. We also describe examples and adaptations of

the clarity score.

5.3.1 Definition of the clarity score

The clarity score predictor is defined as a Kullback-Leibler divergence between the
query and the collection language model. It estimates the coherence of a collection
with respect to a query q in the following way, given the vocabulary V and a subset
of the document collection R, consisting of those documents that contain at least one

query term:

p(w|q)

p(w[C) 5-7)

clarity(q) = Z p(w|q)log,

wevy

p(d|q) = p(q|d)p(d)

p(ald) = | | p(wgld)

wq€q

p(w|q) = Z p(w|d)p(d|q)
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pwld) = Apmwld) + (1= Dpc(w)

The clarity value can thus be reduced to an estimation of the prior p(W|C) (col-
lection language model), and the posterior p(W|q) of the query terms W (query lan-
guage model) using p(W|d) over the documents d € R, and based on term frequen-
cies and smoothing. It should be emphasised that if the set R, is chosen as the whole
collection C, then this technique could be classified as a pre-retrieval performance
predictor, since no information about the retrieval would be used. The importance of
the size of the relevance set R, (or number of feedback documents) has been studied
in (Hauff et al., 2008b), where an adaptation of the predictor was proposed in order
to automatically set the number of documents to consider.

As first published in (Cronen-Townsend et al., 2002) and (Cronen-Townsend
et al., 2000), query ambiguity is defined as “the degree to which a query retrieves

documents in the given collection with similar word usage.” Cronen-Townsend and
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colleagues found that queries whose highly ranked documents are a mix of docu-
ments from disparate topics receive lower scores than if they result in a topically-
coherent retrieved set, and reported a strong correlation between the clarity score
and the performance of a query. Because of that, the clarity score method has been
widely used in the area for query performance prediction.

Some applications and adaptations of the clarity score metric include query ex-
pansion (anticipating poorly performing queries that should not be expanded), im-
proving performance in the link detection task (more specifically, in topic detection
and tracking by modifying the measure of similarity of two documents) (Lavrenko
et al.,, 2002), and document segmentation (Brants et al., 2002). More applications can
be found in Section 5.3.3.

Zhou (2007) provides a complementary formulation of the clarity score by re-

writing the formulation used above as follows:

Laer, P(wW|d)p(dlq)
clarity(q) = Z Z pwld)p(dlq) log = qz;(vlrlllc)p i (5.8)
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In this way, Zhou emphasises, among other issues, the differences between the
query clarity and the Weighted Information Gain predictor. Indeed, the author pro-
poses the following generalisation of both formulations (for WIG and clarity). Spe-
cifically, the clarity formulation presented in Equations (5.7) and (5.8) is unified as

follows:

| & d)
score(q,C,R) = ) > weight(,d) log% 59)
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where T is a feature space, and Ry is a (ranked) document list. Besides this, d €
R, € C must be comparable somehow with elements § € T, in order to make sensi-

ble functions weight(¢, d) and p(§, d). In this context, the query clarity as defined
in (Cronen-Townsend et al., 2002) is an instantiation of Equation (5.9) where the

following three aspects are considered:
o The feature space T is the whole vocabulary, consisting of single terms.
o The weight function is defined as weight(¢,d) = p(w|d)p(d|q).
e The function p(&,d) is defined as ZdERq p(w|d)p(d|q), that is, it uses a
document model averaged over all documents in the ranked list.

These observations help to discriminate between the underlying models used by
these two predictors. In particular, for the query clarity, they also contribute to cap-
ture not so obvious divergences between a query and the collection, as we shall see in

the next section.
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) obedience train dog (2.43)
train dog (0.65)

train (0.33) railroad train dog (0.67)

railroad train (0.73) . )
railroad train caboose (1.46)

Table 5.2. Examples of clarity scores for related queries.

5.3.2 Interpreting clarity score in Information Retrieval

Aiming to better understand how the clarity score predictor behaves in Information
Retrieval, and to what extent it is able to capture the difficulty or ambiguity of que-
ries, in this section we summarise examples reported in the literature that let a clear
interpretation of the predictor’s values.

In a seminal paper (Cronen-Townsend et al., 2002) Cronen-Townsend and col-
leagues present the example shown in Table 5.2, which provides the clarity scores of
a number of related queries that share some of their terms. These queries are related
to each other in the sense that a particular query is formed by extending other query
with an additional term, starting with an initial query formed by a single term, ‘train’
in the example. According to the queries of the table, we can observe that the term
‘train’ has different meanings for the largest queries; it refers to ‘teach’ in the query
‘train dog’, to the ‘locomotive vehicle’ in the query ‘railroad train’, and can refer to
any of both meanings in the query ‘railroad train dog.” The clarity scores capture the
ambiguity of the queries (due to their different meanings for the term ‘train’), inde-
pendently from their length. In fact, the middle rightmost query ‘railroad train dog’
receives the lowest clarity score, corresponding to the most ambiguous query where
the two considered meanings of ‘train’ are involved.

In the same paper, Cronen-Townsend and colleagues present the distribution of
the language models for two queries, a clear query and a vague query (see Figure 2 in
(Cronen-Townsend et al, 2002)). Each distribution is presented by plotting
p(w|q) log, p(w|q)/p(w|C) against the query terms w. The authors show that the
distribution of the values of this function for the clear query dominates the distribu-
tion of the values of the vague query. This makes sense since the clarity score is
computed by summing the probability values in the distribution of every term in the
collection. Additionally, the authors show that the clear query presents spikes in its
query language model when p(w|q) is plotted against the terms, and compared with
the collection probability p(w|C). Hence, some of the terms with high contribution

from the query language model (i.e., with high p(w|q) values) obtain low collection
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probabilities (p(W|C)), thus evidencing a query that is different to the collection in
its term usage (i.e., it is a non ambiguous query).

The above examples involve the (implicit) assumption known as homogeneity as-
sumption, which specifies that the clarity score is higher if the documents in the con-
sidered collection are topically homogeneous. Hauff (2010) analyses the sensitivity of
results with respect to that assumption. Specifically, the author computes the clarity
score for three different ranked document lists: the relevant documents for a query, a
non-relevant random sample, and a collection-wide random sample. The difference
between the last two lists is that the second one is derived from documents judged as
non-relevant, whereas the third one could contain any document in which at least
one query term. Hauff shows how the clarity score is different depending on the
origin of ranked document list, leading to a higher (lower) score by using relevant
(non-relevant) documents for such list. However, we have to note that, as stated by
Hauff, the quality in the separation of the clarity scores computed by each document
list is different depending on the utilised dataset and queries.

The clarity score has been analysed in detail in Information Retrieval, mainly be-
cause its predictive power is superior to other performance predictors (in fact, it is
one of the best performing post-retrieval predictors according to the overview pre-
sented in (Hauff, 2010)), but also because it provides interpretable results and high
explanatory power in different IR processes, as we shall describe in the next section.
Apart from that, the interest in this predictor is clear because of its probabilistic for-
mulation and tight relationship with Language Models (Ponte and Croft, 1998).

5.3.3 Adaptations and applications of the clarity score

Cronen-Townsend and colleagues showed in (Cronen-Townsend et al.,, 2002) that
clarity is correlated with performance, proving that the result quality is largely influ-
enced by the amount of uncertainty involved in the inputs a system takes. In this
sense, queries whose highly ranked documents belong to diverse topics receive lower
scores than queries for which a topically-coherent result set is retrieved. Several au-
thors have exploited the clarity score functionality and predictive capabilities
(Buckley, 2004; Townsend et al., 2004; Dang et al., 2010), supporting its effectiveness
in terms of performance prediction and high degree of adaptation. For instance, the
predictor has been used for personalisation (Teevan etal, 2008) because of its
proven capability of predicting ambiguity. In that paper the authors use more or less
personalisation depending on the predicted ambiguity.

One of the first variants proposed in the area is the simplified clarity score pro-
posed in (He and Ounis, 2004), presented in Section 5.2.1. In that paper He and
Ouni changed the estimations of the posterior p(W|q) to simple maximum likeli-
hood estimators. Hauff et al. (2008b) proposed the Improved Clarity — called
Adapted Clarity in (Hauff, 2010) —, in which the number of feedback documents
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(Rq) is set automatically, and the term selection is made based on the frequency of
the terms in the collection to minimise the contribution of terms with a high docu-
ment frequency in the collection.

An alternative application of the clarity score is presented in (Allan and Raghavan,
2002), where the score obtained for the original set of documents returned by a query
is compared against that obtained for a modified query, which was presumed to be
more focused than the original one. Similarly, in (Buckley, 2004) Buckley uses the
clarity score to measure the stability of the document rankings and compare it against
a measure that uses the Mean Average Precision of each ranking (AnchorMap).

In (Sun and Bhowmick, 2009), Sun and Bhowmick adapted the concept of query
clarity to image tagging, where a tag is visually representative if all the images anno-
tated with that particular tag are visually similar to each other. In previous work (Sun
and Datta, 2009) Sun and Datta proposed a similar concept, but in the context of
blogging: a tag would receive a high clarity score if all blog posts annotated by the tag
are topically cohesive.

Finally, an extension of the Kullback-Leibler divergence was proposed in (Aslam
and Pavlu, 2007), where the Jensen-Shannon divergence was used instead. This dis-
tance is defined as the average of the Kullback-Leibler divergences of each distribu-
tion with respect to the average (or centroid) distribution. In this way, it is possible to
compute the divergence between more than two distributions. Besides, the Jensen-
Shannon divergence is symmetric, in contrast to the divergence used in the clarity

score, and thus, a metric can be derived from it (Endres and Schindelin, 2003).

5.4 Evaluating performance predictors

In this section we describe the approaches proposed in the literature to evaluate the
predictive power of a performance predictor. We define the different functions used
to compute the quality of the performance predictors, most of them based on well
known correlation coefficients between the true query performance values, and the

expected or predicted performance values.

5.4.1 Task definition

Based on the notation presented in Section 5.1, in the following we present different
techniques and functions to assess the effectiveness of performance predictors. Once
the retrieval quality has been assessed (1(q)), and the value of the performance pre-
dictor for each query is calculated (f1(q), using the function ¥), the predictor quality
is computed by using a predictor quality assessment function f9%% that measures the

agreement between the true values of performance and the estimations, that is:

Quality(y) = f™({u(qy), -, u(qn)} {8(q1), -+, 2(g)D (5.10)
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True quality values for each query are typically obtained by computing the per-
query performance of a selected retrieval method (Cronen-Townsend et al., 2002;
Hauff et al., 2008a), or by averaging the values obtained by several engines (Mothe
and Tanguy, 2005), in order to avoid biases towards a particular method. As we shall
see in the next section, the function f%4 typically represents a correlation coeffi-
cient; however, different possibilities are available and may be more appropriate de-
pending on the prediction task.

In fact, in (Hauff et al., 2009) three estimation tasks were considered, by dis-
criminating the output of the predictor function fi. Query difficulty estimation
could be defined as a classification task where I = {0,1} indicates whether the query
is estimated to perform well or poorly. The standard estimation of query perform-
ance, nonetheless, would be defined by a function I = R, in order to provide a
ranking of queries, where the highest score denotes the best performing query. Fur-
thermore, as stated in (Hauff et al.,, 2009), this function by itself does not directly
estimate the performance metric . In order to do that we need to have normalised
scores, such that the range of [l is compatible with that of the metric, which typically
requires I = [0,1]. In this case, we would be considering the normalised quety
petformance task.

The methodology described above is general enough to be applicable to any of
these three tasks, but is clearly inspired by the second one, that is, the estimation of
query performance and it can be easily applied also to third one (normalised per-
formance prediction). Because of that, we describe next a recently proposed meth-
odology more focused on the (binary) query classification task or query difficulty
prediction described in (Pérez-Iglesias and Araujo, 2010).

Let us suppose that, instead of continuous values of the performance metric u,
we are interested in estimating as accurately as possible the different difficulty grades of
the queries, that is, 4 = {1, -+, k}, where k is the number of difficulty grades avail-
able. Obviously, the output of the predictor fI also has to be grouped in one of the k
classes. Typically, we would have k = 3, representing “Easy”, “Average”, and
“Hard” queries, although a binary partition could also be acceptable. In these terms
the performance prediction problem is stated as a classification problem, where the
goal is to effectively predict the query class.

Furthermore, this technique lets set, at the quality computation step, whether we
want to weight uniformly each of the k classes, or if we are more interested in only
one of them, by building, for instance, a confusion matrix, and applying standard
Machine Learning evaluation metrics to a subset of it. In the next section we describe
the most popular techniques for doing this, along with a new metric introduced in

(Pérez-Iglesias and Araujo, 2010) oriented to the problem of performance prediction.
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5.4.2 Measuring the quality of the predictors

There are several methods for measuring the quality of the performance prediction
function i defined in the previous section. In particular, the quality function fa4a
may be able to capture linear relations, take into account the importance implied by
the scores or the ordering given by each variable (true and estimated performance,
i.e., p and 1), and exploit the implicit partitions derived by the method.

The most commonly used quality function is correlation, which has been meas-
ured by three well-known metrics: Pearson’s, Spearman’s, and Kendall’s correlation
coefficients. Pearson’s 1 correlation captures linear dependencies between the vari-
ables, whereas Spearman’s p and Kendall’s T correlation coefficients are used in
order to uncover non-linear relationships between the variables. They are generally
computed as follows, although in special situations (in presence of ties, or when there

are missing values in the data) alternative formulations may be used:

. Y= 00— y) (5.11)
VEm O — 023 (v — )2
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where x and y represent the two variables of interest, X and ¥ denote their means,
d(x;,y;) is the difference in ranks between x; and y;, and Q(x,y) is the minimum
number of swaps needed to convert the rank ordering of x to that of y. All these
coefficients return values between —1 and +1, where —1 denotes a perfect anti-
correlation, 0 denotes statistical independence, and +1 denotes perfect correlation.

It can be observed that Spearman’s p computes a Pearson’s 7 between the ranks
induced by the scores of the variables. Moreover, Kendall’s T is the number of opera-
tions required to bring one list to the order of the other list using the bubble sort algo-
rithm. Besides, although Spearman’s and Kendall’s correlations seem more general
than Pearson’s since they are able to capture non-parametric relations between the
variables, we have to consider that distances between the scores are ignored in the
rank-based coefficients, and thus, it is typically suggested to report one correlation
coefficient of each type.

It is important to note that the number of points used to compute the correla-
tion values affects the significance of the correlation results. The confidence test for a
Pearson’s 1 correlation, modeled as the t-value of a t-distribution (assuming normal-
ity) with N — 2 degrees of freedom (being N the size of the sample), is defined by
the following equation (Snedecor and Cochran, 1989):
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N
N Pearson’s r value 50 100 500
p-value 50 100 500 0.1 0.696 | 0.995 | 2.243
p<0.05 | 1.677 | 1.661 | 1.648 0.2 1.414 | 2.021 | 4.555
p<0.01 | 2407 | 2.365 | 2.334 0.3 2179 | 3.113 | 7.018
0.4 3.024 | 4.320 | 9.739

Table 5.3. Left: minimum t-value for obtaining a significant value with different sample sizes
(N). Right: t-value for a given Pearson’s correlation value and N points. In bold when the
correlation is significative for p < 0.05, and underlined for p < 0.01.

(5.14)

The t-value therefore depends on the size of the sample, and thus, the signifi-
cance of a Pearson’s correlation value r may change depending on the number of
test queries. In particular, for small samples, we may eventually obtain strong but
non-significant correlations; whereas for large samples, on the other hand, we may
obtain significant differences, even though the strength of the correlation values may
be lower. The above also applies to the correlations computed using the Spearman’s
coefficient, but only under the null hypothesis or large sample sizes (greater than
100) (Snedecor and Cochran, 1989; Zar, 1972). For Kendall’s correlation, the confi-
dence test can be computed using an exact algorithm when there are no ties based on
a power series expansion in N 1, depending again, thus, on the sample size (Best and
Gipps, 1974).

Table 5.3 shows the minimum t-value for obtaining a significant value with dif-
ferent sample sizes and p-values, along with the t-value computed using Equation
(5.14) for different correlation values and sample sizes. In the table we can observe
that the same correlation value may be significant or not depending on the size of the
sample, for instance, with 50 queries, observations are significant with p < 0.05 for
correlation values equal or above 0.3, whereas for 100 queries it is enough to obtain
Pearson’s correlation values of 0.2. This observation is related to the one presented
in (Hauff et al., 2009), where Hauff and colleagues compared the confidence intervals
of the three correlation coefficients described before, and observed how, due to the
small query set sizes, most of the predictors analysed (pre-retrieval approaches such
as clarity, IDF-based, and PMI) presented no significant differences, despite having
very different values. In particular, this generated a subset of the analysed predictors
that were not statistically different to the best performing predictor reported, and
thus, any of the predictors in subset may be used in a later application since they ob-

tain statistically similar (strictly speaking, not statistically different) correlations.
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Furthermore, in the same paper, Hauff and colleagues proposed to use the Root
Mean Squared Error (RMSE) as a quality function. The rationale behind this is that
the RMSE squared is the function being minimised when performing a linear regres-
sion, and thus, it should also be able to capture the (linear) relation between the vari-
ables. In fact, there is a close relation between the RMSE and the Pearson’s 1 coeffi-

cient, by means of the residual sum of squares (Carmel and Yom-Tov, 2010):
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Additional extensions to these correlation coefficients have been proposed. Most
of these extensions have been focused on incorporating weights in the computation
of the correlation (Melucci, 2009; Yilmaz et al., 2008). However, despite these met-
rics have an evident potential in the performance prediction area, to the best of our
knowledge there is no work using them in order to evaluate the quality of the predic-
tors (Pérez Iglesias, 2012).

Finally, a different family of quality functions can be considered in the query difficulty
task, that is, when the performance prediction is cast as a classification problem. These
techniques are based on the accuracy of the classification provided by the performance
predictor, and thus, classic Machine Learning techniques could be used. In (Pérez-Iglesias

and Araujo, 2010), Pérez-Iglesias and Araujo propose to use the F-measure:

precision - recall
F=2

5.17
precision + recall G17)

Additionally, in the same paper, Pérez-Iglesias and Araujo introduced a new met-
ric (distance based error measure, or DBEM) along with a methodology that is
focused on the misclassified difficulty classes between the predictor and the true
classes. With this goal in mind, the authors apply a clustering algorithm to both the
performance metric values and their estimations, aimed to minimise the distance
between elements in the same group, and maximise the distance between elements in
different groups. Specifically, Pérez-Iglesias and Araujo used the k-means algorithm,
setting the value of k to the number of relevance grades, k = 3 in their paper. The
metric DBEM is defined as follows:

Yrdist(c(x;), c(v))
xr m]ax dist ( c(x;), c(xj)) (5.18)

diSt(Ci,Cj) = ”l _]”;0 < l)] < k

DBEM =
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where ¢(x) is the function which assigns the proper class or partition to a given
score X, according to the clustering algorithm. This metric captures the distance be-
tween every partition, normalised by the maximum possible distance. In this case,

lower distances imply a better predictor quality.

5.5 Summary

Improvement of the predictive capabilities to infer the performance or difficulty of a
query is consolidated as a major research topic in Information Retrieval, where it has
been mostly applied to ad-hoc retrieval. Several performance predictors have been
defined based on many different information sources, demonstrating the usefulness
of such predictors in different tasks, mainly for query expansion, but also for rank
fusion, distributed information retrieval, and text segmentation.

Some issues are, however, still open in the field, mostly regarding the evaluation
of performance prediction. Performance prediction methods have been usually
evaluated on traditional TREC document collections, which typically consist of no
more than one million relatively homogenous newswire articles, and few research
work has exploited these techniques with larger datasets; see, e.g. (Carmel et al., 20006;
Zhou, 2007; Hauff, 2010) for some exceptions. Furthermore, reported correlation
coefficient values have been typically computed using a small number of points (e.g.
50 queries for standard tracks in TREC), not always providing enough confidence to
derive conclusions. And more importantly, how predictors have to be evaluated and
which metric has to be used are still open research questions, that have generated
some fruitful discussion in recent publications (Hauff, 2010; Pérez Iglesias, 2012),
although a definitive answer has not been obtained yet.

We may presume that in the future other information retrieval applications may
benefit from the framework derived by these techniques, and may develop tailored
performance predictors by using purpose-designed performance metrics and evalua-
tion methodologies, such as the recently developed concept of document difficulty in
(Alvarez et al., 2012). This thesis is an example of such an application in the Recom-
mender Systems field. More specifically, as we shall see in the next chapter, we trans-
late the problem of performance prediction to the Recommender Systems area,
where it has been barely studied. We focus our research on the query clarity predictor
as a basis for the recommendation performance predictors, although additional tech-
niques could be used, as we shall also present in Chapter 6. Finally, among the array
of evaluation strategies presented above, we have decided to use correlations since it
is the most common one in the literature, and provides a fair notion about the inter-

pretability of the results.



Chapter 6

Performance prediction in

recommender systems

In this chapter, we state and address the recommendation performance prediction
problem, proposing and evaluating different prediction schemes. After laying out a
formal frame for the problem, we start by researching the adaptation of principles
and prediction techniques that have been proposed and developed in ad-hoc Infor-
mation Retrieval. More specifically, we draw from the notion of query clarity as a
basis for finding suitable performance predictors that provide a well grounded theo-
retical formalisation. In analogy to query clarity, we hypothesise that the amount of
uncertainty involved in user and item data (reflecting ambiguity in user’s tastes and
item popularity patterns) may also correlate with the accuracy of the system’s rec-
ommendations. This uncertainty can be captured as the clarity of users and/or the
clarity of items by an adaptation of the query clarity formulation. This adaptation,
however, is not straightforward, as we shall describe. Besides the approaches elabo-
rating on the notion of clarity, we propose new predictors based on theories and
models from Information Theory and Social Graph Theory.

In Section 6.1 we formulate the research problem we aim to address. Next, in
Sections 6.2, 6.3, and 6.4 we propose several performance predictors for recom-
mender systems, some of them based on the clarity score, information theoretical
related concepts — such as entropy —, and graph-based metrics. The proposed predic-
tors are defined upon three different spaces, namely ratings, logs, and social net-
works. Moreover, we also provide specific correlations of the described predictors in
Section 6.5 in order to show their predictive power under different conditions along

with a discussion of the results. Finally, in Section 6.6 we provide some conclusions.
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6.1 Research problem

Performance prediction finds a special motivation in recommender systems. Con-
trary to query-based information retrieval, as far as the initiative relies on the system,
a performance prediction approach may provide a basis to decide producing recom-
mendations or holding them back, depending on the expected level of performance
on a per case basis, delivering only the sufficiently reliable cases. On the other hand,
recommenders based on a single algorithm are not competitive in practice, and real
applications heavily rely on hybridisations and ensembles of algorithms.

The capability to foresee which algorithm can perform better in different cir-
cumstances can therefore be envisioned as a good approach to enhance the perform-
ance of the combination of algorithms by dynamically adjusting the reliance on each
subsystem. Furthermore, it is well-known in the recommender systems field that the
performance of individual recommendation methods is highly sensitive to different
conditions, such as data sparsity, quality and reliability, which are subject to an ample
dynamic variability in real settings. Hence, being able to estimate in advance which
recommenders are likely to provide the best output in a particular situation opens up
an important window for performance enhancement. Alternatively, estimating which
users of a system are likely to receive worse recommendations allows for modifica-
tions in the recommendation algorithms to predict this situation, and react in ad-
vance.

The problem of performance prediction has been however barely addressed in
the Recommender Systems field. The issue has been nonetheless mentioned in the
literature — evidencing the relevance of the problem — and is in some way often im-
plicitly addressed by means of ad hoc heuristic tweaks such as significance weighting
in nearest neighbour recommenders (Herlocker et al., 1999) and confidence scores
(Wang et al., 2008a), along with additional computations (mainly normalisations)
which are introduced into the recommendation methods aimed to better estimate the
predicted ratings.

In the recommendation context, the problem of performance prediction can be
stated as follows. We define a performance predictor as a function that takes a cer-
tain input, and returns a real value that correlates with some utility dimension of a
recommender system. This is an instantiation of the problem presented in Section
5.1 but in the recommendation setting. For such purpose, we first specify more pre-
cisely what the input space of predictors consists of, and how the predictor input and
output relate to the data involved in recommendation. Thus, a utility predictor han-

dles the following information:



0.1 Research problem 105

Input variables

e The specific configuration of the recommender system. For instance, for a
nearest neighbour recommender input parameters could be the neighbour map

(that assigns a set of neighbours to each user) and a user similarity metric.
e Any input of the recommender, such as the active user and the active item.

e Background/context information: any known uset, item, and uset-item interac-
tion data, such as user ratings, user features, item features, social network in-
formation, data timestamps, etc. We have to note that, even though the predic-
tor will generally use this type information, we consider it as implicit input and
do not include it explicitly in our notation to avoid making it needlessly cum-

bersome.

Output variable
e A valuein R.

A predictor is thus a function y: R X U X J = R (R being the set of all recom-
menders) that estimates the performance of the system, possibly using additional
information available in the background. A predictor can be independent from some
of these inputs, which would be then omitted in the previous notation. For instance,
in this chapter we shall present predictors of the form y:U — R and y:J —» R. Ad-
ditionally, a predictor may assume a specific parameterised recommender algorithm
family (e.g. nearest neighbour collaborative filtering), and needs some element of its
configuration as input. It may also happen that a predictor does not make any as-
sumption on the recommender — it does not depend on it — but still the predictor
works well only for certain types of recommenders. It would be syntactically possible
and correct to apply the predictor with other recommenders, although it may work
badly. In general, what it means for a predictor to work “well” may depend on the
application, but we generally assume it can be evaluated in terms of its correlation to
some utility dimension of recommendations, such as an accuracy metric (RMSE,
precision, nDCG) or alternative metrics such as novelty, diversity, etc.

If a recommender system can be decomposed into its internal configuration,
then a predictor can directly take as input the components of the recommender con-
figuration. For instance, neighbourhood-based collaborative filtering recommenders
can be represented in R = E X N X §, where &: RF x R¥ - R* is a preference
estimation function (based on k similarity values between the target user and her
neighbours, and k neighbours’ ratings on the target item), N: U — P(U) is a
neighbourhood assignment map, and § is a similarity metric. Upon such a model, we

would have y:EX N XS XU XTI - R.



106 Chapter 6. Performance prediction in recommender systems

We may also constrain some inputs to a relevant condition they should meet.
For instance, we could limit ourselves to a neighbourhood map that considers a user
v as a candidate neighbour. In that case, this map can be essentially represented by v,
and then we would have y:E XU XS X U X T = R (note that the first U in the
Cartesian product stands for neighbour users, and the second U for target users).

It is important to note that when the predictor takes as input some of the inputs
of the recommender, namely the active user and/or the active item, then the predic-
tor’s correlation with the recommender’s utility must be measured on a per-input
basis. For instance, if the predictor just takes users as input arguments, it should cot-
relate with the average utility per user.

Moreover, predictors can also be used to enhance hybrid recommenders by fa-
vouring strategies that are predicted to produce better results. This can be done by
relating activation switches in the recommenders to predictor values, so that one
recommender or the others are activated or favoured depending on the predictor’s
estimation.

The way in which these activation switches are related to predictors is typically
application-dependent. For instance, in ensemble recommenders consisting of a
unique (Boolean) selection among a set of recommenders, the selection/discarding
of recommenders can be a binary function of a predictor for each recommender. If
the ensemble consists of a linear combination of recommenders, the weights in the
combination can also be a function of the predictors. In neighbourhood-based col-
laborative filtering, activation switches can be the weights of neighbours in the pre-
diction of user ratings. Indeed, relating predictor values to activation switches is a
non-trivial problem and generally requires some research on itself.

Based on all the above mentioned issues, the general research problem we ad-
dress consists of a) finding effective predictors of recommendation utility, and b)
identifying and testing useful applications for the found predictors. In the reminder
of this chapter we propose different predictors of recommendation utility using dif-
ferent types of input, namely ratings, logs, and social information. In Chapters 7 and
8 we shall exploit and evaluate such predictors in two applications: dynamic hybrid

recommendation, and dynamic neighbour weighting in collaborative filtering.

6.2 Clarity for preference data: adaptations of query
clarity

In this thesis, we propose different adaptations for the concept of query clarity to
recommender systems. First, we deal with the definition of user clarity when rating-
based preference data is available, where alternative ground models are proposed,

depending on which random variables want to be considered in the computation of
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the user clarity. Then, we define the concept of user clarity for log-based preference
data. Additionally, for ratings we also define the concept of item clarity.

Now we propose a fairly general adaptation of query clarity, which may be in-
stantiated into different schemes, depending on the input spaces considered. At an
abstract level, we consider an adaptation that equates users in the recommendation
domain to queries in the search domain, as the corresponding available representa-
tions of user needs in the respective domains. This adaptation results in the following
formulation for user clarity:

clarity(u) = Z p(x|u) log, % (6.1)

XEX

As we can observe, the clarity formulation strongly depends on a “vocabulary”
space X, which further constrains the user-conditioned model (or user model for
short) p(x|u), and the background probability p(x). In ad-hoc information retrieval,
this space is typically the space of words, and the query language model is a probabil-
ity distribution over words (Cronen-Townsend et al.,, 2002). In recommender sys-
tems, however, we may have different interpretations, and thus, different formula-
tions for such a probabilistic framework, as we shall show. In all cases, we will need
to model and estimate two probability distributions: first, the probability that some
event (depending on the current probability space X) is generated by the user lan-
guage model (user model); and second, the prior probability of generating that event
(background model).

Under this formulation, user clarity is in fact the difference (Kullback-Leibler di-
vergence) between a user model and a background model. The use of user and back-
ground distributions as a basis to predict recommendation performance lies on the
hypothesis that a user probability model being close to the background (or collec-
tion) model is a sign of ambiguity or vagueness in the evidence of user needs, since
the generative probabilities for a particular user are difficult to single out from the
model of the collection as a whole. In Information Retrieval, this fact is interpreted
as a query for which the relevant documents are a mix of articles about different top-
ics (Cronen-Townsend et al., 2002).

As an additional step, we generalise the adaptation stated in Equation (6.1) to al-

low for different reference probability models parameterised by a generic variable 6.

p(x|u, 0)
;P(xlu, 6) log, k8 (6.2)

This generalisation will allow for the development of further varieties of the clarity

clarity(u) = Eq

scheme, and simplifies to Equation (6.1) whenever we implicitly consider a fixed 8,
as we shall see next. Equivalently, the variable 8 may be integrated in both user and

background models by exploiting a multidimensional vocabulary space:
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p(x, 6|u)

clarity(u) = z p(x, 0|u) log, S5 0) (6.2b)

XEX,0€EO
It is easy to see that Equations (6.2) and (6.2b) are fully equivalent, and thus al-

low two interpretations for the same magnitude.

As stated in (Cronen-Townsend et al., 2002), language models capture statistical
aspects of the generation of language. Therefore, if we use different vocabularies, we
may capture different aspects of the user. The probabilistic relations between the
variables involved in Equation (6.2) also depend on the nature of the data, and the
different possible generative models induced by the recorded observations of user-
item interactions (the input to a recommender system). In this thesis we consider two
types of interaction data records: users-rating-items (where the atomic event is a user
rating an item with a value), and users “consuming’ items (a user accesses an item at
some time instant). The first type fits a dataset such as MovieLens and CAMRa, and
the second fits well Last.fm data — the datasets on which we shall test the methods to
be developed here. Across these two types, in our research we explore mainly three
vocabulary spaces for X: ratings, items, and time. Each of the vocabulary spaces
induces its own user-specific interpretation, as we shall see. As for the optional con-
textual parameter 6, we shall consider here only the space of items ranging over the
set of items — thus fully leveraging the triadic nature of the user-item-rating and user-
item-time spaces. The scheme is however open to the exploration of further possi-
bilities, as is the vocabulary space itself, beyond the options researched here.

In the following sections we thus explore several alternatives for rating-based

and log-based data spaces (and their induced generative models).

6.2.1 Rating-based clarity

As just mentioned, in the rating space, we consider a set of user-item-rating tuples,
where each user-item pair appears in a unique tuple (i.e., users only rate items once).
We consider two possible vocabulary spaces: items and ratings, and two context alter-
natives: items (which make only sense in the rating vocabulary) and none. The resulting
clarity schemes are summarised in Table 6.1, and have each their own interpretation.
The rating-based clarity model captures how differently a user uses rating values
(regardless of the items the values are assigned to) with respect to the rest of users in
the community. The item-based clarity takes into account which items have been
rated by a user, and therefore, whether she rates (regardless of the rating value) the
most rated items in the system or not. Finally, the item-and-rating-based clarity com-
putes how likely a user would rate each item with some particular rating value, and
compares that likelihood with the probability that the item is rated with some par-
ticular rating value. In this sense, the item-based user model makes the assumption

that some items are more likely to be generated for some users than for others de-
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. Vocabulary X / User Background .
User clarity Context 6 model model Formulation
, Ratings / p(r|u)
Rating-based Non% p(rlu) pe(r) Z p(r|u)log, o0
Item-based Items / (ilw) ) Z p(iJu) log, pllw)
None p Pe - p(@)

Item-and- Ratings / . . Z Dol D 1o p(rlw, )

rating-based Items p(riu, ) P (1) L p(p(riu, Dlog, p(r|D)

Table 6.1. Three possible user clarity formulations, depending on the interpretation of the
vocabulary and context spaces.

pending on their previous preferences. The rating-based model, on the other hand,
captures the likelihood of a particular rating value being assigned by a user, which is
an event not as sparse as the previous one, with a larger number of observations.
Finally, the item-and-rating-based model is a combination of the two previous mod-
els into a unified model incorporating items and ratings. As we mentioned before,
this could be made more explicit by considering the user model p(r,i|u) in the
Equation (6.2b), which would be equivalent to this model under some indepence

assumptions, i.e., when p(r, i|u) = p(r|u, DHp(i).

Ground models for user clarity

We ground the different clarity measures defined in the previous section upon a rat-
ing-oriented probabilistic model very similar to the approaches taken in (Hofmann,
2004) and (Wang et al., 2008a). The sample space for the model is the set U X J X
R, where U stands for the set of all users, J is the set of all items, and R is the set of
all possible rating values. Hence, an observation in this sample space consists of a
user assigning a rating to an item. We consider three natural random variables in this
space: the user, the item, and the rating value, involved in a rating assignment by a
user to an item. This gives meaning to the distributions expressed in the different
versions of clarity as defined in the previous section. For instance, p(r|i) represents
the probability that a specific item i is rated with a value  — by a random user —,
p(i) is the probability that an item is rated — with any value by any user —, and so on.
The probability distributions upon which the proposed clarity models are de-
fined can use different estimation approaches, depending on the independence as-
sumptions one would consider, and the amount of involved information. Back-

ground models are estimated using relative frequency estimators, that is:

{(w,i) e UxT|r(u,i) =1}
{(u,i) € U xT|r(u,i) # 0}

pc(r) = (6.3)
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l{u € Ulr(u, i) # 0}
[{(u,j) € UxT|r(u,j) # 0}
[{u € Ulr(u,i) =7}
l{u € Ulr(u,i) # 0}

I{i € 7|r(u,i) =1}
I{i € 3r(u, i) # 0}

These are maximum likelihood estimations in agreement with the meaning of the

pc(l) =

Pmi (Tli) =

P (rlu) =

random variables as defined above. Starting from these estimations, user models can
be reduced to the above terms by means of different probabilistic expansions and
Bayesian reformulations, which we define next for the three models introduced in
the previous section.

Item based model. The p(ilu) model can be simply expanded through mar-
ginalisation over ratings, but under two different assumptions: the item generated by
the model only depends on the rating value, independently from the user or, on the
contrary, depends on both the user and the rating. These alternatives lead to the fol-

lowing developments, respectively:

pr(ilw) = z P ()P () (6.4)

TER

pur(ilw) = z p(ilu, )y (rlw) (6.5)

TeER
Rating based model. This model assumes that the rating value generated by the
probability model depends on both the user and the item at hand. For this model, we

sum over all possible items in the following way:

POl = > plrlu,dpiw 66
r(wi)=r

where the p(i|u) term can be developed as in the item-based model above. The term

p(rlu, i) requires further development, which we define in the next model.
Item-and-rating based model. Three different models can be derived depend-
ing on how the Bayes’ rule is applied. In these models, item probability is assumed to
be uniform and thus it can be ignored in the computation of the expectation in
Equation (6.2). In the same way as proposed in (Wang et al., 2008a), three relevance
models can be defined, namely a user-based, an item-based, and a unified relevance

model:

pQulr, Dpm (r]i)
Yrer PU|T, Dpp (ri)

pu(rlu,i) = 6.7)
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p (i, r)pm (r|w)
Yrer P(lu, )P (rlw)

pi(rlw i) = (6.8)
p(u,i|r)p.(r)
ZrER p(u; i |r)pc (T)

The first derivation induces a user-based relevance model because it measures by

pur(rlu, i) = (6.9)

p(u|r,i) how probable it is that a user rates item i with a value 7. The item-based
relevance model is factorised proportional to an item-based probability, ie.,
pr(rlu, i) o< p(ilu, r). Finally, in the unified relevance model, we have py; (r|u, i) «
p(u, i|r). These estimations correspond respectively with the Equations 20a, 20b,
and 21 from (Wang et al., 2008a); to make the thesis self-contained and facilitate the
comparison between the different probability models, we present now these equa-
tions from (Wang et al., 2008a):

ulr 1) 1 Z 1 K u—v
plulr,i) = ————= 71 (_) 6.10
ISG, 01, £ AT\ hy 640

1 1 i—j
p(ilu,r) = ——= Z WK(—) (6.11)

15wl jestan M hi
1 1 u—ov\ 1 i—j

p(u, i) = o7 z —7K( ) U K( ) 6.12
ISOT, £ BT\ hy Rk, 642

where K(+) is a Parzen Kernel function (Duda et al., 2001). In this formulation, u
denotes the user u represented as a vector by her ratings in the space of items. Un-
rated items can be filled with the average rating value or with other constant value,
such as 0 or the average rating in the community. Respectively, i represents the item
[ in the user space. hy and h; are the bandwidth window parameter for the user and
item vector, respectively; S(+) denotes the set of observed samples where event (+)
has happened. For example, S(,i) denotes the set of observed samples with event
(R = 1,1 = i). More specifically:

S(r,i)={ueUlr(ui)=r} (6.13)
Str,u) ={i € I|lr(w,i) =1} (6.14)
Sr)y={(w,i) eUxT|r(u,i) =1} (6.15)

In the experiments, we used a Gaussian Kernel function, ie., K(x) =

e x*/2 /[y 2m, and h; = hy,, = 0.9 as suggested in (Wang et al., 2008a).
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User clarity name  User dependent model  Background model
RatUser pu (rlw, 0); pyr (ilw) pc(r)
Ratltem pr(rlu, ); pyg (ilw) pc(r)
ItemSimple pr(ilw) pc (@)
ItemUser pur(ilu) pc (D)
IRUser py (rlu, i) P (D)
IRItem pi(rlu, i) P (D)
IRUserltem py(rlu, i) P (D)

Table 6.2. Different user clarity models implemented.

Finally, different combinations of distribution formulations and estimations re-
sult in a fair array of alternatives. Among them, we focus on a subset that is shown in
Table 6.2, which provide the most interesting combinations, in terms of experimental
efficiency, of user and background distributions for each clarity model. These alter-
natives are further analysed in detail below (with examples) and in Section 6.5.1

where correlations obtained by each model are presented.

Qualitative observation

In order to illustrate the proposed prediction framework and give an intuitive idea of
what user characteristics the predictors are capturing, we show the relevant aspects of
specific users that result in clearly different predictor values, in a similar way to the
examples provided in (Cronen-Townsend et al., 2002) for query clarity. We compare
three user clarity models out of the seven models presented in Table 6.2: one for
each formulation included in Table 6.1. In order to avoid distracting biases on the
clarity scores that a too different number of ratings between users might cause, we
have selected pairs of users with a similar number of ratings. This effect would be
equivalent to that found in Information Retrieval between the query length and its
clarity for some datasets (Hauff, 2010).

Table 6.3 shows the details of two sample users on which we will illustrate the
effect of the predictors. As we may see in the table, U, has a higher clarity value than
uy for the three models analysed. That is, according to our theory, U, is less “am-
biguous” than u,. Figure 6.1 shows the clarity contribution in a term-by-term basis
for one of the item-and-rating-based clarity models — where, in this case, terms are
equivalent to a pair (rating, item) — as analysed in (Cronen-Townsend et al., 2002). In
the figure, we plot p(r|u,i)log,(p(r|u,i)/p(r|i)) for the different terms in the

collection, sorted in descending order of contribution to the user model, ie.,

User | Number of ratings | ItemUser clarity Ratltem clarity  IRUserltem clarity
Uy 51 216.015 28.605 6.853
U, 52 243.325 43.629 13.551

Table 6.3. Two example users, showing the number of ratings they have entered, and
their performance prediction values for three user clarity models.
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Figure 6.1. Term contributions for each user, ordered by their corresponding contribution to
the user language model. IRUserItem clarity model.

p(r|u,i), for each user. For the sake of clarity, only the top 20 contributions are
plotted. We may see how the user with the smaller clarity value receives lower con-
tribution values than the other user. This observation is somewhat straightforward
since the clarity value, as presented in Equation (6.1), is simply the sum of all these
contributions, over the set of terms conforming the vocabulary. In fact, the figures
are analogous for the rest of the models, since one user always obtains higher clarity
value than the other.

Let us now analyse more detailed aspects in the statistical behaviour of the users
that explain their difference in clarity. The IRUserltem clarity model captures how
differently a user rates an item with respect to the community. Take for instance the
top item-rating pairs for users 1 and 2 in the above graphic. The top pair for u, is (4,
“McHale’s Navy”). This means that the probability of u, rating this movie with 4 is
much higher than the background probability (considering the whole user commu-
nity) of this rating for this movie. Indeed, we may see that u; rated this movie with a
3, whereas the community mode rating is 1 — quite farther away from 4. This is the
trend in a clear user. On the other extreme of the displayed values, the bottom term
in the figure for u, is (2, “Donnie Brasco”), which is rated by this user with a 5, and
the community mode rating for this item is 4, thus showing a very similar trend be-
tween both. This is the characteristic trend of a non-clear user.

Furthermore, if we compare the background model with the user model, we ob-
tain more insights about how our models are discriminating distinctive from main-
stream behaviour. This is depicted in Figure 6.2. In this situation, we select those
terms which maximise the difference between the user and background models.
Then, for this subset of the terms, we sort the vocabulary with respect to its collec-
tion probability, and then we plot the user probability model for each of the terms in
the vocabulary.
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Figure 6.2. User language model sorted by collection probability.

These figures show how the most ambiguous user obtains a similar distribution
to that of the background model, while the distribution of the less ambiguous user is
more different. In the rating-based model this effect is clear, since the likelihood of
not so popular rating values (i.e., a ‘5’) is larger for u, than for u;, and at the same
time, the most popular rating value (a ‘4’) is much more likely for u;. The figure
about the ItemUser model is less clear in this aspect, although two big spikes are
observed for u; with respect to the collection distribution, which correspond with
two unpopular movies: ‘Waiting for Guffman’ and ‘Cry, the beloved country’, both
with a very low collection probability. Finally, the figure about the IRUserItem model
successfully shows how u, has more spikes than u,, indicating a clear divergence
from the background model; in fact, u;’s distribution partially mimics that of the

collection. In summary, the different models proposed are able to successfully sepa-
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Item clarity VOCCaO?]Lt'LirtyGX/ nlwtoecrl];I Baﬂ](g(l;g:md Formulation
Rating-based Rath‘nges / p(rld) pe(r) Z p(rli) log, pp( (rrlg)
User-based U’\slce)gse/ p(uli) pe(w) Zu: p(uli) log, pp(zt_lg)
st | R e | wt D ppoii s B

Table 6.4. Three possible item clarity formulations, depending on the interpretation of the
vocabulary and context spaces.

rate information concerning the user and that from the collection, in order to infer

whether a user is different or similar from the collection as a whole.

Item clarity

Alternatively to user-based predictors, we can also consider item-based predictors,
where the performance prediction is made on an item-basis. Item predictors can be
defined analogously as those defined previously for users, the equation for item clar-

ity being as follows:

. p(x]i,6)
Z p(x|i, 0) logzm (6.16)

XEX

clarity(i) = Eq

The formulation of the item predictors we propose is basically equivalent to the
user-based scheme but swapping users and items. That is, we have the three formula-
tions presented in Table 6.4 where the vocabulary now may be either ratings or users,
and the context variable is the user space. Based on these three formulations, and on
derivations analogous to those presented before, we propose the seven item predic-
tors defined in Table 6.5 which are further evaluated in Section 6.5.2.

In some of the instantiations of the item clarity predictor, we may observe that

there are item probability models statistically equivalent to some of the user probabil-

ity models, such as the py (r|i, u) and py (r|u, i). For this reason, we now only spec-

Item clarity name  Item dependent model  Background model
Ratltem pr (rli, w); prg (uli) pe(r)
RatUser py (rli, w); prg (uli) pe(r)
UserSimple pr(uli) pc(wW)
Userltem pir(uli) p.(w)
URItem p;(rli,w) P (W)
URUser py(rli,u) P (W)
URItemUser Py (rli, w) Pou ()

Table 6.5. Different item clarity models implemented.
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ify those probability models which have not been defined before, for the rest of es-
timations see Equation (6.3):

pr(uld) = z P @lT) P (r]0) (6.17)

TER

pir(uli) = Z p(uli, )ppu(rli) (6.18)
TER

P (rli,w) = py (rli, w) (6.19)

6.2.2 Log-based clarity

In this section we adapt some of the previous models proposed for user clarity when
the preference data come in the form of user-item interaction logs. Log data has a
particularity we aim to exploit: the number of times a user consumes (purchased,
listened, browsed, etc.) an item may be higher than one, in contrast with rating-based
preferences, where the relation between a user and an item is summarised as a unique
value, the rating. Moreover, the timestamp of the interactions has a stronger meaning
in the implicit approach, as it informs of the very instant the user decided to use the
item, rather than the time when the user decided to reflect on her quality of experi-
ence with the item (rating time). Specialised recommendation algorithms have been
proposed in the literature that exploit such features in order to obtain better recom-
mendations (Xiang et al., 2010; Lee et al., 2008). Additional alternatives for the defi-
nition of the vocabulary may be proposed, but we shall focus on these two: log co-
occurrences and timestamps.

Specifically, based on Equation (6.2) and the three instantiations of X and 6
shown in Table 6.1, in principle only an instantiation analogous to the second one
(X =7, no context — to which we shall refer as frequency-based clarity) makes sense
here, as there is no rating space. However, it is possible to consider an additional
space, which leads to structurally similar instantiations by taking time as the X vo-
cabulary. The similarity is only syntactic, as the meaning and implications of the re-
sulting magnitude, to which we shall refer as time-based clarity, are quite different
from rating-based clarity — in other words, ratings and time are quite different dimen-

sions —, as we shall describe later below.

Frequency-based clarity

As mentioned above, we may define the following instantiation of the Equation (6.2)

based on frequencies as follows:

ilu
frequency-based clarity(u) = z p(ilw) log, p;(L)) (6.20)
i
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where now the estimations of the user and background models are computed using
directly the frequencies of the co-occurrences of some particular user-item interac-
tion in the data:

@) = freq(i)
PR =S e frea()
. (6.21)
p(ilu) = rea(i u)
2jes, freq(j, u)

An alternative to such estimations is to use transformations from implicit log-
based to explicit ratings, such as the one proposed in (Celma, 2008). In that ap-
proach, any of the predictors based on ratings proposed in the previous section could
be applied, since these transformations give the additional vocabulary space of rat-

ings that was absent in principle in log data.

Time-based clarity

As introduced earlier, the second dimension susceptible to be exploited when log-
based preference data are available is time. The time dimension is being paid increas-
ing attention in Information Retrieval, where, for instance, it has been integrated into
language models as a means to capture some temporal information needs from the
user (Berberich et al., 2010), and the temporal query dynamics are being increasingly
considered in the field (Kulkarni et al., 2011). In fact, temporal query features have
also been used for query performance prediction, showing low or moderate correla-
tion with query performance by themselves, although higher correlation is obtained
when such features are combined with query clarity (Diaz, 2007; Diaz and Jones,
2004).

Furthermore, time has an inherent place in recommendation: recommender sys-
tems take as input (potentially long) histories of user interaction with items (Lathia,
2010; Zimdars et al., 2001; Burke, 2010). Time is an essential dimension in making
sense of the data, and in explaining, analysing and interpreting the motivations be-
hind the actions of users recorded over time. We propose to bring these ideas to
recommender systems, in particular, to adapt the temporal features studied by Diaz
and colleagues on a recommender system dataset. More specifically, we use the tem-
poral Kullback-Leibler divergence described in (Diaz and Jones, 2004) as a starting
point, which we generalise and elaborate upong by considering the instantiation of
Equation (6.2) for a time-based space X, and the space of items as a possible contex-
tual dimension, as presented in Table 6.6. In the following, we define the specific

instantiations of the temporal clarity formulations presented in this table.



118 Chapter 6. Performance prediction in recommender systems

. Vocabulary X / User Background .
User clarity Context 6 model model Formulation
: Time / Z p(tlw)
- tjlw)l
Time-based None p(tlu) p(t) t p(tuw)log, (D)
ltem-and- Time / , . Z (el 1) log, P D
time-based Items p(tlu, ) p(tlD) - pp(ths D log p(tli)

Table 6.6. Two temporal user clarity formulations, depending on the interpretation of the
vocabulary space.

Time based model. We denote as TimeSimple clarity the most direct adapta-
tion for temporal clarity, which does not use any further extension over other dimen-
sions. It simply computes p(t|u) using smoothing (see below) and p.(t) from the
collection frequencies.

Item-and-time based model. Like in the previous section, we develop condi-
tional probabilities into sums with respect to a third variable: the items rated by the
user. Here, we define two temporal clarity predictors depending on the distribution
assumed for the items in the summation. If the distribution is uniform we denote
such predictor as ItemTime clarity and p(i) = 1/|7|. If, on the other hand, we
also want to incorporate the popularity of the item for — which we have more data in
this context and makes more sense than in rating data, since there the interaction
between a user and an item is binary —, we include the prior item probability as
p(i) = p (i), which can be estimated considering the frequency by which i is ac-
cessed based on the interaction log.

The probabilities presented above are estimated as follows:

H{(v,j,t) € LIv e U,j € T}

pc(t) = |L|
< Hw,i,s) e LlveU,s e S}
pc(i) =
|£]
~_ HKwit) e Llveull
P (£10) = {(v,i,s) € L|lv € U,s € S} (6.22)
(tho) = l{(w,j,t) € LI|j € 3}
Prult) =10 j,s) € Lj € 7,5 € S}
P (tlw, 0) UCTDRES!

" {(u,i,s) € L|s € S}

Note that the variable t in (u, i, t) in the above expressions denotes a timestamp
in the discretised time segment (e.g. day, week) represented by t. Furthermore, these
are simple estimations of the distributions; hence, it is also possible to introduce non-
parametric estimations or additional expansions through similar users or items (Wang
et al., 2006a; Wang et al., 2008a). Moreover, distributions can also be modeled by
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other statistical theories or hypothesis (such as Bayesian inversion), and distribution
fitting/modelling from time seties theoty could also be studied (Diaz and Jones,
2004; Wang et al., 2008b).

In particular, we have smoothed these estimations using Jelinek-Mercer as fol-

lows:

p(tli) = A pp (t]D) + (1 —2) p(2)
p(tlu) = A pm (tluw) + (1 = 2) p(t) (6.23)
p(tlw, i) = A ppy (tlu,i) + (1 —2) p(t)

6.3 Predictors based on social topology

Social information is widespread nowadays. As we surveyed in Chapter 2, recom-
mender systems that use social information are proliferating in the research literature,
as well as in the recommender system industry, because of the effectiveness they are
being found to have. It seems therefore sensible to consider social information as a
potentially useful input for predicting the performance of recommendation. The mo-
tivation for this approach is obvious when applied to social recommender systems,
though we will also explore its potential properties in relation to non-explicitly social
recommendation, in order to study whether social topologies may have an indirect
effect on the results of the algorithms for different users.

With this goal in mind, we explore the use of graph-based measures as indicators
of the user strength in the social network, which may in turn correlate with the ease
or difficulty of users as recommendation targets. Graph-based measures developed
from link-analysis theory are straightforward to interpret where they are often used
to understand the structure of communities within a population (De Choudhury
et al., 2010; Albert and Barabasi, 2002). As a basis for user performance prediction
they may thus bring an advantage in terms of explaining the predictions.

More specifically, the utilised indicators of the user strength in the network are
based on the following vertex measures computed over the social network for each
user, where a user is represented as a node in the graph, and the user’s friends corre-

spond with the node’s neighbours:

e Average neighbour degree: mean number of friends of each user’s friend
(Kossinets and Watts, 2000).

e Betweenness centrality: indicator of whether a user can reach others on rela-

tive short paths (Freeman, 1977).

e Clustering coefficient: probability that the user’s friends are friends them-
selves (Watts and Strogatz, 1998).
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¢ Degree: number of the user’s friends in the social network (Milgram, 1967).

¢ Ego components size: number of connected components remaining when

the user and her friends are removed (Newman, 2003).

e HITS: Kleinberg, 1999) defines two complementary measures which assign
recursively a weight to each vertex (user) depending on the topology of the
network. In this way, they define hubs and authorities: a vertex is a hub when it
links to authoritative vertices, and is an authority when it links to hub vertices.
Since the social network used here (see Appendix A.1.3) is undirected, hub and

authority scores are redundant and we only report one, denoted as HITS.

e PageRank score: well-known measure of connectivity relevance within a social
network based on a random walk over the vertices, where a probability

(@ = 0.2 in our experiments) of jumping to any other vertex is introduced
(Brin and Page, 1998).

¢ Two-hop neighbourhood size: count of all the user’s friends plus all the
uset’s friend’s friends (De Choudhury et al., 2010).

6.4 Other approaches

As a reference for comparison, we shall also test further predictors besides the ones
proposed in the thesis, directly drawn from the literature, and not necessarily based
on probabilistic formalisations, but following more loose formalisations, or heuristic
approaches. As a further sanity check, we shall also examine obvious and simple
functions (such as the amount of activity of a user), as a reference for the justification
of elaborate approaches as proposed. Next, we present these predictors which are

evaluated and compared in Section 6.5.

6.4.1 Using rating-based preference data

A fairly simple user predictor against which we would like to compare more elaborate
functions is the count predictor, namely the number of items a user has rated at
some specific moment. This predictor, as we shall see later, can be defined in the
training set and in the test set, and although its rationale is the same, the output has
different implications. Whereas in training this predictor is measuring how much
information a recommender knows about some specific user, in test this value would
be related to the amount of relevance used to obtain the performance metric. Fur-
thermore, as observed in Chapter 4, the amount of relevance would be different de-
pending on the evaluation methodology considered. However, we have to note that,

due to statistical effects, the training count (profile size in training) and test count
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(profile size in test) would probably be related if the training/test split is performed

randomly.

count(u) = |7, | = [{(u,,")} (6.24)

Two additional heuristic predictors can be defined by looking at user statistics
such as the mean and the standard deviation of the user’s ratings. It seems plausi-
ble that such predictors would not be equally powerful for any type of recommender:
it would depend on whether these statistics are used by the recommender. For in-
stance, one might have the intuition that the higher the standard deviation, the lower
the recommendation performance as one may figure out uniform user ratings to be a

somewhat easier target.

1 .
mean(u) = m; r(u, i) (6.25)
1
std(w) = m Z (r(u, i) — mean(u))2 (6.26)
ulier,

Alternatively to these heuristic predictors, we have also experimented with a pre-
dictor defined upon the past observed recommender’s performance. In this way, this
predictor — denoted as training performance from now on — use a validation set (as
a subset of the original training set) to evaluate the performance of each user with
respect to a specific recommender; then, this value is the one returned by the predic-
tor at test time. This approach is inspired in the Machine Learning techniques which
aim to learn a feature (in this case, the user’s performance) by using some training
information. For this predictor, this training information is the performance com-
puted on the validation set.

Additionally, we propose to measure the entropy of the user’s preferences as a
quantification of the uncertainty associated with a probability distribution (Cover and
Thomas, 1991). We may therefore assess the uncertainty involved in the system’s
knowledge about a user’s preferences by the entropy of the item distribution (the
probability to choose an item) given the information in the user profile, using the

ground models presented in Section 6.2.1. Hence, we define this predictor as follows:

entropy(u) = Z p(ilu) log, p(ilw) (6.27)

i€y
Alternative measures from Information Theory could be used to define user-
based predictors, like Information Gain (Bellogin, 2009), but we leave them out of
this analysis because its application to Recommender Systems is neither clear nor
principled and their predictive results are not optimal. Furthermore, other measures

already proposed in the literature such as inverse user frequency (Breese et al., 1998)
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and the analogous inverse item frequency (Bellogin, 2009), and other manipulations
of the same concept, are also ignored here because they are simply transformations
of the previously presented count predictor. Finally, the concept of power users
(Lathia et al., 2008) could also be used as a proxy for well-performing users, but pre-

liminary results have not shown strong predictive power.

6.4.2 Using log-based preference data

As we have observed in the previous section, recommendation performance usually
has obvious predictors, obvious in the sense that they do not involve any interesting
finding or insightful kind of analysis, or anything to learn from. We include in our
analysis some of these obvious predictors, framed as baseline performance predictors
that basically count how many interactions a user has had with the system. In this
sense, these predictors are slightly different to the ones presented in the previous
section, namely because in log-based datasets repetitions of items are allowed in a
uset’s profile. In order to account for this difference, apart from count, mean, and
standard deviation predictors, we propose to normalise the count predictor by the
number of items consumed by each user, that is, we define the average count pre-

dictor as follows:

l{(u,j,s) € L]j € 7,5 € S}
Ij € L: (u,j,s) € L,s € S}

We also test more elaborate predictors based on the temporal dimension, such as

average count(u) = (6.28)

the ones defined in (Diaz and Jones, 2004). First-order autocorrelation (or temporal
self-correlation) can be considered with a reinterpretation of the random variables.
Specifically, this predictor, in contrast with the temporal Kullback-Leibler divergence
where the similarity with the temporal background model is assessed, captures the
structure of the query time series. For instance, a uniform distribution would have an
autocorrelation value of 0, whereas a query time series with strong inter-day (or
whatever segment size is used to build the discrete time series) dependency will ob-
tain a high autocorrelation value.

Thus, we define the autocorrelation user predictor as follows:

=) —1/D (@ + 1jw) — 1/T)
=1 (p(thy) — 1/T)2

where T is the total number of time units in the time interval. We can observe how

autocorrelation(u) = (6.29)

this predictor captures the similarity between two consecutive observations.
Extensions of this predictor could use the probabilities defined in Section 6.2.2,

like p(t|u, i), instead of p(t|u). Similarly, other predictors proposed by Diaz and

Jones in (Diaz and Jones, 2004) and (Jones and Diaz, 2007) such as the kurtosis or
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the burst model could be adapted to recommender systems, but we leave such exten-

sions for future work.

6.5 Experimental results

In this section we provide correlation results where all the predictors — heuristic,

social, and clarity-based — are compared against each other using an array of recom-

mendation methods and evaluation methodologies.

6.5.1 User predictors using rating-based preference data

In this section we compare the correlations obtained for the clarity-based predictors
defined in Section 6.2.1, the user entropy defined in Equation (6.27), and the base-
lines presented in Equations (6.24), (6.25), and (6.26) using the MovieLens 1M data-
set. The A parameter for the language model smoothing was not optimised for this
task and a default value of 0.6 was used in all the models as originally used in
(Cronen-Townsend et al., 2002). Here, we focus on Pearson’s correlation and P@10.
Additional results are reported in Appendix A.4.1.

Table 6.7 shows the correlation values when the AR methodology is used. We
can observe fairly high correlation values for recommenders pLSA, ItemPop, TFL2,
and kNN, comparable to results in the query performance literature. A slightly lower
correlation is found for TFL1, whereas no correlation is found for CB and IB. These
results are consistent when other performance metrics are used such as nDCG, and
at different cutoff points. Spearman’s correlation yields similar values. Here we also

include the count predictor in test, which is obviously not a predictor in strict sense,

Predictor Random | CB IB ItemPop kNN pLSA TFL1 TFL2 | Median Mean
Count (training) 0.135 | 0.164 0.042 0.512 0.424 0.442 0.198 0.644 0.311 0.320
Count (test) 0.135 | 0.172 0.042 0.520 0.431 0.452 0.200 0.647 0.316  0.325
Training performance 0.024 | 0.176  0.258 0.429 0.296 0.357 0.215 0.485 0.277  0.280
Mean 0.019 | 0.067 -0.002 0.015 0.022 0.108 0.026 -0.018 0.021  0.030
Standard deviation 0.008 | 0.008 0.011 -0.029 -0.031 -0.032 0.011 -0.051 -0.011 -0.013
ItemSimple Clarity 0.149 | 0.191 0.046 0.549 0.453 0.489 0.222 0.683 0.338 0.348
ItemUser Clarity 0.134 | 0.166 0.048 0.493 0.416 0.428 0.215 0.634 0.316  0.317
RatUser Clarity 0.135 | 0.160 0.048 0.514 0.442 0.435 0.214 0.651 0.325 0.325
Ratltem Clarity 0.127 | 0.159  0.039 0.475 0.402 0.405 0.203 0.611 0.303  0.303
IRUser Clarity 0.128 | 0.157 0.027 0.486 0.382 0.408 0.182 0.599 0.282  0.296
IRItem Clarity 0.122 | 0.165 0.034 0.446 0.352 0.386 0.188 0.551 0.270  0.281
IRUserltem Clarity 0.128 | 0.158 0.033 0.479 0.379 0.403 0.193 0.594 0.286  0.296
Entropy 0.121 | 0.168 0.025 0.492 0.389 0.483 0.140 0.589 0.279  0.301
Median 0.128 | 0.162 0.037 0.489 0.396 0.418 0.196 0.605
Mean 0.112 | 0.145 0.033 0.413 0.338 0.367 0.166 0.511

Table 6.7. Pearson’s correlation between rating-based user predictors and P@10 for different recommenders using
the AR methodology (MovieLens dataset).
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since it uses a different input than the other predictors, but we include it in our
analysis as a further reference to check behaviours.

As mentioned in Chapter 5, the standard procedure in Information Retrieval for
this kind of evaluation is to compute correlations between the predictor(s) and one
retrieval model (like in (Cronen-Townsend et al., 2002) and (Hauff et al., 2008a)) or
an average of several methods (Mothe and Tanguy, 2005). This approach may hide
the correlation effect for some recommenders, as we may observe from the median
and mean correlation values included in the table, which are still very large despite
the fact that two of the recommenders analysed have much lower correlations.
Nonetheless, these aggregated values, i.e., the mean and the median, provide com-
petitive correlation values when compared with those in the literature.

The difference in correlation for CB and IB recommenders may be explained
considering two factors: the actual recommender performance and the input sources
used by the recommender. With regards to the first factor, as presented in Table 6.8,
the IB algorithm performs pootly (in terms of the considered ranking quality metrics,
such as precision and nDCG) in comparison to the rest of recommenders. It seems
natural that a good predictor for a well performing algorithm (specifically, pLSA is
the best performing recommender in this context) would hardly correlate at the same
time with a poorly performing one.

This does not explain however the somewhat lower correlation with the content-
based recommender, which has better performance than TFL1. The input informa-
tion that this recommender and the predictors take in are very different: the latter
compute probability distributions based on ratings given by users to items, while the
former uses content features from items, such as directors and genres. Furthermore,
the CB recommender is not coherent with the inherent probabilistic models de-
scribed by the predictors, since the events modeled by each of them are different: CB
would be related to the likelihood that an item is described by the same features as
those items preferred by the user, whereas predictors are related to the probability
that an item is rated by a user. Moreover, the predictors’ ground models coherently
fit in the standard collaborative framework (Wang et al., 2008a), which reinforces the
suitability of the user performance predictors presented herein, at least for collabora-
tive filtering recommenders.

It is worth noting to this respect that most clarity-based query performance predic-

Recommender Random CB IB IltemPop kNN pLSA  TFL1  TFL2

AR methodology 0.0025 | 0.0163 0.0001 0.0897 0.0307 0.1454 0.0024 0.0696
1R methodology 0.0099 | 0.0221 0.0074 0.0649 0.0437 0.0836 0.0221 0.0690
U1R methodology [ 0.0100 | 0.0223 0.0068 0.0406 0.0381 0.0718 0.0294 0.0524
P1R methodology [ 0.0101 | 0.0197 0.0208 0.0282 0.0265 0.0604 0.0203 0.0348

Table 6.8. Summary of recommender performance using different evaluation methodologies
(evaluation metric is P@10 with the MovielLens dataset).
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tion methods in Information Retrieval study their predictive power on language model-
ling retrieval systems (Cronen-Townsend et al., 2002; Hauff et al., 2008a; Zhou and
Croft, 2007) or similar approaches (He and Ounis, 2004). This suggests that a well per-
forming predictor should be defined upon common spaces, models, and estimation
techniques as the retrieval system the performance of which is meant to be predicted.
Finally, the correlation values found by the training performance predictors, al-
though sometimes strong, are not as high as those of the baselines predictors — such as
training count — in most situations, in particular, they are always lower except for the
IB and TFL1 recommenders. This highlights the importance of having a more general
model for predicting the performance of a user, since these predictors in fact depend
considerably on the properties of the validation (and test) partition of the data, such as

the amount of sparsity, type of items evaluated and so on.

Unbiased performance prediction

In Chapter 4 we already demonstrated that some methodologies may be biased to-
wards more popular items or sparsity constraints. We can observe in the previous
table that trivial predictors such as count (either in training or in test) obtain signifi-
cant (and positive) correlation, no matter the recommender. We argue whether this is
because these predictors are really capturing an interesting effect or the evaluation
methodology is prone to such effect. In order to overcome this problem, now we
present the same correlation analysis but with the different methodologies presented
in Chapter 4.

In Table 6.9 we show results with the methodology 1R. Here we can observe
that most of the correlation values are lower than in the previous case; interestingly,
the correlation with the Random recommender now is almost 0 for every predictor

(and in particular, for the training and test profile size). This is evidence that per-

Predictor Random CB IB ItemPop kNN pLSA  TFL1 TFL2
Count (training) 0.061 | -0.038 0.092 0.258 0.108 0.303 0.086 0.394
Count (test) 0.063 | -0.033 0.091 0.266 0.115 0312 0.089 0.398
Training performance 0.012 0.332 0.168 0.272 0.266 0.133  0.303 0.240
Mean 0.036 0.082 -0.029 0.028 0.111 0.117 0.145 0.031
Standard deviation -0.010 0.006 0.051 -0.060 -0.116  -0.080 -0.040 -0.114
ItemSimple Clarity 0.066 | -0.033 0.094 0.265 0.115 0.322 0.105 0.409
ItemUser Clarity 0.059 | -0.038 0.087 0.236 0.100 0.287 0.096 0.375
RatUser Clarity 0.057 | -0.054 0.083  0.245 0.130 0.285 0.086 0.372
Ratltem Clarity 0.057 | -0.044 0.069 0.225 0.110 0.268 0.094 0.352
IRUser Clarity 0.056 | -0.020  0.053  0.250 0.069 0.280 0.077 0.364
IRItem Clarity 0.051 | -0.010 0.058  0.205 0.029 0235 0.074 0.310
IRUserltem Clarity 0.056 | -0.020  0.052  0.242 0.066 0.273 0.081 0.357
Entropy 0.091 0.021 0.144  0.354 0.169 0460 0.114 0.543

Table 6.9. Pearson’s correlation between rating-based user predictors and P@10 for different
recommenders using the 1R methodology (MovieL ens dataset).
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Predictor Random CB IB ItemPop kNN pLSA  TFL1  TFL2
Count (training) 0.048 | -0.012  0.237 0.162 0.115 0.140 0.022 0.235
Count (test) 0.049 | -0.001  0.226 0.135 0.110 0.137 0.036  0.213
Mean 0.023 0.051 -0.035 0.009 0.108 0.075 0.155 -0.006

Standard deviation 0.015 0.032 0.023  -0.047 -0.098 -0.038 -0.061 -0.049
ItemSimple Clarity 0.055 | -0.005 0.241 0.166 0.128 0.153 0.042 0.241

ItemUser Clarity 0.046 | -0.009  0.232 0.142 0.109 0.133 0.028 0.216
RatUser Clarity 0.045 | -0.028 0.234 0.155 0.137 0.130 0.022  0.225
Ratltem Clarity 0.043 | -0.025 0.212 0.136 0.119 0.117 0.033  0.203
IRUser Clarity 0.044 0.002  0.180 0.153 0.069 0.134 0.029 0.210
IRItem Clarity 0.036 0.011 0.178 0.114 0.035 0.108 0.014 0.173
IRUserltem Clarity 0.042 0.003 0.178 0.147 0.065 0.130 0.028 0.203
Entropy 0.078 0.044 0.278 0.227 0.169 0.249 0.073 0.321

Table 6.10. Pearson’s correlation between rating-based user predictors and P@10 for different
recommenders using the U1R methodology (MovieLens dataset).

formance results using the AR methodology are higher for users with more items in
their test, independently from the recommendation algorithm complexity (see corre-
lations with Random recommender in Table 6.7). In the same way, the UIR (Table
6.10) and P1R (Table 6.11) methodologies also obtain negligible correlation values
for the Random recommender, which confirms the suitability of these methodologies
for our purposes. We also have to note that we have not applied the training per-
formance predictor in these methodologies because their restrictions do not let to
replicate the same conditions in a validation split. Furthermore, as stated in Chapter
4, both approaches aim to remove the bias towards more popular items. Here, we
can observe how the correlation with respect to the ItemPop recommender is com-
parable to that with the Random recommender with the P1R methodology, confirm-
ing again the ability of this methodology to produce unbiased results (at least, with
respect to popular items).

The main difference in the results obtained between these three methodologies
(1R, U1R, and P1R) seems to be more at the recommender level rather than at the

Predictor Random CB IB ItemPop kNN pLSA  TFL1 TFL2
Count (training) 0.073 | -0.005  0.253 0.088 0.103 0.160 -0.001 0.307
Count (test) 0.076 0.000 0.253 0.093 0.108 0.168 0.003 0.308
Mean 0.034 0.073 -0.033 0.008 0.110 0.085 0.188 -0.026

Standard deviation -0.010 0.009 0.014 -0.058 -0.104 -0.044 -0.061 -0.051
ItemSimple Clarity 0.078 0.000 0.254 0.084 0.111 0.169 0.019 0.313

ItemUser Clarity 0.072 | -0.001  0.249 0.075 0.101 0.156 0.005 0.303
RatUser Clarity 0.071 | -0.016  0.252 0.086 0.128 0.148 0.003 0.297
Ratltem Clarity 0.067 | -0.011  0.234 0.077 0113 0.138 0.016 0.288
IRUser Clarity 0.066 0.002  0.200 0.086 0.066 0.147 0.006 0.274
IRItem Clarity 0.059 0.010 0.192 0.061 0.037 0.123 -0.006  0.242
IRUserltem Clarity 0.066 0.003  0.200 0.082 0.065 0.145 0.006 0.272
Entropy 0.092 0.038  0.286 0.133 0.128 0.266  0.039  0.379

Table 6.11. Pearson’s correlation between rating-based user predictors and P@10 for different
recommenders using the P1R methodology (MovielLens dataset).
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predictor level, in the sense that the trend in predictor effectiveness is similar for
each methodology but the correlations obtained for each recommender vary dra-
matically from one methodology to another. For instance, IB recommender obtains
near zero correlations with 1R but higher (significative) values for UIR and P1R; a
similar situation occurs with the TFL2 recommender, where the correlations are
lower for the UIR methodology and higher for 1R and P1R. Note that the training
and test sets are the same for all the methodologies except for U1IR, which means
that the performance predictors are entirely new for that methodology. Thus, a priori
it would not be clear that such an agreement between the different methodologies
should appear at the predictor level unless they are really capturing the same nuance
about the user, no matter the evaluation methodology used.

It is worth noting that the correlation values of these three methodologies have
been found after a careful examination of the available data, where two different
trends emerged: one where the performance values were more or less uniformly dis-
tributed in the interval [0,0.1] — recall that 0.1 is the maximum value for the metric
P@10 with the 1R methodology, since there is only one relevant item — ; and a sec-
ond one where a fixed value was obtained. This second trend, against which our pre-
dictors shown no correlation at all (since the performance had a zero standard devia-
tion, and thus the correlation was impossible to calculate) is able to degrade the cor-
relation coefficient almost to negligible values, mainly because it accounts for half of
the number of points. This problem with correlation coefficients, and with Pearson’s
correlation in particular, is well known in the literature of performance prediction
(Hauff, 2010; Pérez Iglesias, 2012). For this reason, we have divided the performance
values and computed two correlations in order to account for these two trends: the
values with respect to the first trend are those presented in the previous tables,
whereas the correlation with respect to the second trend was not computable be-
cause the variable had a zero standard deviation.

In summary, there seems to be no clear winner among the set of performance
predictors proposed. The predictive power of each of them is clearly influenced by
the actual recommender its performance aims to be predicted and the evaluation
methodology in use. Nonetheless, the proposed predictors usually obtain higher
correlation values than baseline predictors such as the mean or the standard de-
viation, evidencing their predictive power independently from the evaluation
methodology. Surprisingly, the ItemSimple clarity predictor obtains very good re-
sults in most of the situations, although more complex predictors like IRUser or

IRUserltem clarity obtain stronger correlations for some recommenders.

6.5.2 Item predictors using rating-based preference data

In the same way we have assessed the predictive power of user predictors, we now

aim to estimate the predictive power of item predictors. However, the true perform-
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Table 6.12. Procedure to obtain ranking for items from user rankings generated by a
standard recommender. * denotes a relevant item, and the numbers are the score
predicted by the recommendation method.

ance value for an item is not straightforward to compute, since the process has to
produce unbiased results in the space of items (as described in Chapter 4) but with
the characteristic that the item dimension is not the main input of the recommenda-
tion process, and thus, sone new approach has to be put in place.

There are basically two possibilities for computing the true performance on an
item: either starting from the results obtained using a standard procedure (obtain a
ranking for each user by recommending items to users), then transposing users and
items (generating, thus, user rankings for each item) and computing the per-ranking
performance as usual; or transpose the original rating matrix in order to effectively
“recommend users” for each item. This would implicitly imply a transposition of the
recommendation task, which may also make sense: find the most suitable users to
recommend an item — this would be the scenario, e.g. in advertisement targeting
when a new product is released on the market. Here, we use the former approach
since the latter does not produce consistent results in our experiments, probably be-
cause the recommendation problem is not completely symmetric and, thus, this
method is not able to properly capture the recommender’s performance for each
item. On the other hand, non-personalised recommenders (such as recommendation
by item popularity) cannot be applied in the symmetric formulation: since the same
item ranking is built for all users, the user ranking for an item would be a global tie
on all users. Table 6.12 shows an example of how we may transpose users and items
from an item ranking for three users. We show that the precision for all the users is
the same, whereas for the items is completely diverse, ranging from zero to perfect
precision.

In our experiments, we have tested the different methodologies already pre-
sented along with a modified version of the UIR evaluation methodology (user-
uniform U1R, or uuU1R). The rationale for the uuU1R design goes as follows: in the
U1R methodology we force the same number of ratings (or, equivalently, users) for
the items in the test set, however, users are freely assigned to each item. Now, when

we transpose users and items this situation may produce a new problem, since there
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Predictor Random CB ItemPop kNN pLSA
Count (training) 0.414 0.060 -0.151  -0.021 -0.269
Count (test)

Mean 0.602 0.125 0.096 0.040 -0.038

Standard deviation -0.313 0.025 -0.006 -0.003 0.075
UserSimple Clarity 0.467 0.080 -0.120  -0.015 -0.240

Userltem Clarity 0.419 0.064 -0.145  -0.018 -0.261
Ratltem Clarity 0.440 0.075 -0.127  -0.015 -0.230
RatUser Clarity 0.451 0.085 -0.103  -0.004 -0.201
URItem Clarity 0.396 0.053 -0.174  -0.026 -0.289
URUser Clarity 0.408 0.072 -0.132  -0.004 -0.243
URItemUser Clarity [ 0.409 0.061 -0.161  -0.021 -0.277
Entropy 0.381 -0.001 -0.216  -0.055 -0.442

Table 6.13. Pearson’s correlation for rating-based item predictors and precision
using the uuU1R methodology (Movielens dataset).

could be users assigned to more items which would bias the ranking’s performance
towards items contained in the test set of heavy raters. Therefore, if we impose a
uniform distribution also on the uset’s dimension, this bias should decrease. We refer
to the reader to Appendix A.3 for more details.

However, despite these efforts, we have not found a reliable methodology to
evaluate the item performance. We present in Table 6.13 the results using the uuUIR
methodology and the predictors defined in Table 6.5 for the precision metric. Recall
that, since we transpose users and items from the generated rankings, to obtain a
similar measure of P@10 we only use the top 10 items from each original ranking
and then compute precision over the whole ranking for each item. We may observe
in the table that the correlations with the Random recommender are very strong,
questioning the validity of such results. Besides, the entropy predictor obtains
stronger correlation than clarity-based in this case, and most of them (except for
URItem) show little difference to training count. Note that it is not possible to com-
pute a correlation with the test count predictor since that predictor has a constant
value with zero standard deviation (see Equation (5.11) for more details on Pearson’s
correlation) since every item has the same number of ratings in the test set in the
uuU1R methodology.

As a conclusion, we have found that a proper evaluation of item performance
is not obvious, mainly because the task of suggesting users to items is not com-
pletely symmetric with respect to the standard task of recommendation. We have
devised different methodologies to estimate the recommendatoin performance of an
item, however the difficulty lies mainly in forming consistent lists of “recommended”
users for items, a difficulty which is not conceptual (ranking target users to whom an
item may be recommended does make sense as a task in many scenarios), but techni-
cal (obtaining balanced result lists that allow for undistorted performance measure-

ments).
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6.5.3 User predictors using log-based preference data

In this section we analyse the correlation obtained between the predictors defined in
Sections 6.2.2 and 6.4.2 and five recommenders using the 1R methodology on two
versions of the Last.fm dataset — one where a temporal partition is performed and
another where the partition is randomly made (more details about the splits in Ap-
pendix A.1.2). No smoothing was used in the language models since preliminary tests
obtained better results with lower values of A. Besides, for compatison purposes, we
also include one of the clarity models proposed for rating-based preference data us-
ing the transformation proposed in Section 6.2.2 to use such predictors with log data
along with the frequency-based clarity proposed in Equation (6.20). Like in the pre-
vious section, Pearson’s correlation with the P@10 evaluation metric is reported; for
additional metrics, see Appendix A.4.2.

First, we can observe in Table 6.14 (temporal split) that ItemPriorTime clarity
obtains strong correlation values, especially for the ItemPop and kNN recommend-
ers. It is interesting to compare the correlations between this predictor and the Item-
Time clarity, which are much lower. This is probably because the ItemPriorTime
clarity predictor, as opposed to ItemTime clarity, incorporates a component that
measures the item popularity, ie., p(i). The TimeSimple and the frequency-based
clarity predictors, on the other hand, obtain strong correlation but negative values for
all the recommenders except the ItemPop for the TimeSimple predictor. Further-
more, the ItemSimple clarity (a predictor based on explicit information) obtains neg-
ligible correlations except for the ItemPop and kNN recommenders.

Table 6.15, on the other hand, shows the results when a random split is used. We
have to note that such split does not preserve the temporal continuity of the user’s
preferences, and thus, any recommender or technique which makes use of temporal
features is not guaranteed to succeed. Here, we can observe that TimeSimple predic-

tor obtains strong correlations for all the recommenders except for the Random

Predictor Random| CB ItemPop kNN pLSA
Average Count 0.027 0.138 0.069 -0.013 0.191
Count 0.046 0.118 -0.058 0.131  0.139
Mean -0.079 | -0.361  0.054 -0.110 -0.376
Standard deviation -0.050 | -0.158 0.082  -0.132 -0.177
Autocorrelation 0.004 0.139 -0.066 -0.105  0.100
TimeSimple Clarity -0.091 | -0.342 0.093 -0.317 -0.354
ItemTime Clarity 0.037 0.078  0.038 0.258  0.064
ItemPriorTime Clarity 0.057 0.154  0.189 0.307 0.154
Frequency-based Clarity| -0.049 | -0.410 -0.221  -0.291 -0.376
ItemSimple Clarity 0.027 0.047 -0.107 0.221  0.029

Table 6.14. Pearson’s correlation between log-based predictors and P@10 for different
recommenders using 1R methodology (Last.fm temporal dataset).
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Predictor Random| CB ItemPop kNN pLSA
Average Count -0.023 | -0.068 -0.170  -0.018 -0.087
Count -0.012 | -0.236 -0.242  -0.086 -0.198
Mean 0.036 0.182  0.100 0.047  0.118
Standard deviation -0.009 0.089  0.079 0.092 0.082
Autocorrelation 0.045 | -0.069 -0.089 -0.012 -0.055
TimeSimple Clarity 0.031 0.274 0.314 0.169  0.240
ItemTime Clarity 0.021 | -0.145 0.004 0.025 -0.053
ItemPriorTime Clarity 0.011 [ -0.057 0.176 0.145  0.083
Frequency-based Clarity| 0.025 0.018 -0.287 -0.182 -0.220
ItemSimple Clarity 0.020 | -0.247 -0.163 -0.068 -0.186

Table 6.15. Pearson’s correlation between log-based predictors and P@10 for different
recommenders using 1R methodology (Last.fm five-fold dataset).

technique. Like before, ItemPriorTime has a high correlation with the ItemPop re-
commender. In contrast with the previous situation, the ItemSimple clarity obtains
strong but negative correlations for the personalised recommenders. Besides, the
frequency-based clarity has negative correlations for all the recommenders except
CB, a consistent situation with the results obtained with the temporal split.

Hence, we may conclude that log-based and time-aware predictors success-
fully predict the performance of the recommendation algorithms, although in
some situations the sign of the prediction is negative. Moreover, frequency-based,
ItemSimple, and TimeSimple clarity obtain consistently strong correlations both in a

temporal split and in a random split of the data, evidencing their predictive power.

6.5.4 User predictors using social-based preference data

In this section we study the correlation between the predictors described in Section
0.3 and several recommenders using the two versions of the CAMRa dataset: social
and collaborative. In this case, we also consider social filtering recommenders in or-
der to analyse whether these predictors are sensitive to the source of information
used by the recommender, and thus, whether they obtain stronger correlations with
social filtering recommenders. Besides, one clarity-based predictor (ItemSimple) and
the baseline rating predictors presented in Section 6.4.1 are also included in the
analysis for comparison purposes. Additionally, for the HITS and PageRank graph
metrics in this experiment we use the implementation developed in the JUNG library
(O’Madadhain et al., 2003).

Table 6.16 shows correlation values obtained when using the AR methodology
in the social version of the dataset. Here, we can observe that most of the correlation
values obtained for the social predictors are negative, representing that the lower the
predictor output, the better the performance, which may seem a little counter-

intuitive, at least for the social filtering recommenders (Personal and PureSocial).
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Among the social-based predictors, degree and two-hop neighbourhood size obtain
better correlations than the rest.

A similar situation is presented in Table 6.17, where the collaborative-social ver-
sion of the dataset is used. Again, most of the correlations with the social-based pre-
dictors are negative, and degree and two-hop neighbourhood size obtain higher cor-
relations (in absolute value). Interestingly, in this situation strong correlations are
obtained with the user-based recommender (kNN), in particular with degree and the
average neighbour degree predictors. Nonetheless, these correlations are lower than
those obtained for the ItemSimple predictor with the collaborative filtering recom-
menders. At the same time, this predictor always obtains worse correlations (in abso-
lute value) than the social-based predictors for the social filtering recommenders, as
expected.

Additionally, note that the number of points used in the correlation computation

is different in each version of the dataset, namely: in the collaborative-social version

Predictor Random | ItemPop kNN pLSA  Personal PureSocial
Count (training) 0.032 0.122 0.113 0.031 0.062 0.111
Count (test) 0.158 0.252 0.382 0.167 0.235 0.174
Mean -0.066 0.033 -0.012 0.023  -0.057 -0.051
Standard deviation 0.034 0.054 -0.020 0.115 0.128 0.183

Avg neighbour degree -0.062 | -0.089 -0.013 0.011  -0.074 -0.106
Betweenness centrality | -0.031 | -0.016 0.027 -0.038 -0.012 -0.079
Clustering coefficient 0.049 | -0.084 -0.023 0.048  -0.027 -0.035

Degree -0.038 | -0.046 0.015  -0.059  -0.147 -0.133
Ego components size -0.058 0.005 0.004 -0.046  -0.056 -0.020
HITS -0.021 | -0.043 0.005 0.061 0.038 0.000
PageRank -0.022 | -0.025 -0.023  -0.039  -0.102 -0.037
Two-hop neighbourhood| -0.080 | -0.082 0.004  -0.054 -0.123 -0.136
ItemSimple Clarity 0.030 0.157 0.130 0.050 0.072 0.126

Table 6.16. Pearson’s correlation between social-based predictors and P@10 for different
recommenders using AR methodology (CAMRa Social).

Predictor Random | ItemPop kNN pLSA  Personal PureSocial
Count (training) 0.012 0.098 0.203  0.107 0.058 0.111
Count (test) 0.096 0.207 0.389  0.179 0.232 0.170
Mean -0.067 0.000 -0.126 -0.024 -0.051 -0.050
Standard deviation 0.082 0.014 -0.029 0.016 0.129 0.182

Avg neighbour degree 0.071 | -0.008 0.152  0.046 -0.073 -0.104
Betweenness centrality -0.007 | -0.008 0.010  -0.005 -0.012 -0.078

Clustering coefficient 0.006 | -0.022 0.152  0.076 -0.032 -0.035
Degree 0.032 0.018 0.164  0.006 -0.143 -0.134
Ego components size 0.026 0.044 0.133  0.002 -0.053 -0.022
HITS -0.011 | -0.034  -0.001  0.061 0.038 0.001
PageRank -0.002 0.021 0.118 0.014 -0.099 -0.040
Two-hop neighbourhood| 0.059 | -0.015 0.130  0.012 -0.121 -0.135
ItemSimple Clarity 0.010 0.120 0.211  0.129 0.070 0.126

Table 6.17. Pearson’s correlation between social-based predictors and P@10 for different
recommenders using AR methodology (CAMRa Collaborative).
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the number of users contained in the test set is twice the number available in the
social version (see Appendix A.1.3), which means that significant correlations can be
achieved with lower values (as described in Chapter 5).

In the results described above, we can observe how, like in the previous sections,
the size of the user profile in test (predictor count in test) obtains significant correla-
tions. This trend, however, is almost neutralised in the collaborative-social dataset
with respect to the Random recommender. Thus, as before, we would attempt to use
the 1R methodology with each dataset in order to obtain unbiased correlations to-
wards users with more ratings in test. However, due to the lack of coverage of Per-
sonal and PureSocial recommenders, this methodology do not obtain sensible results
(for instance, the value of precision at 10 is almost invariably 0.10, that is, the maxi-
mum possible value when only one relevant document — as assumed in the 1R meth-
odology — is retrieved in the top 10, mainly because the recommender is not able to
retrieve most of the not relevant items). This lack of coverage is natural for these
recommenders since they can only suggest items rated by users in the active uset’s
social network (see Appendix A.2 for details on the implementation of the algo-
rithms).

In conclusion, most of the social performance predictors proposed obtain sig-
nificant correlations, however, correlations with the social filtering methods are
not so strong as we would expect. Nonetheless, the ItemSimple clarity does
obtain significant correlations with respect to most of the recommenders, high-
lighting the importance and validity of this predictor even when the main input of

some recommenders (social network) is so different to that of the predictor (ratings).

6.5.5 Discussion

The reported experiments confirm that it is possible to predict a recommender’s per-
formance and obtain strong correlations in this regard. The results show that, in gen-
eral, the proposed predictors (mostly based on Kullback-Leibler divergences over
different language models and other concepts from Social Graphs and Information
Theory such as entropy) obtain significant correlations in the three spaces consid-
ered: ratings, logs, and social networks. More importantly, these correlations are
stronger than those obtained by more simple predictors, such as the profile size of a
user, the standard deviation of her ratings, and the user’s performance using a valida-
tion split. Specifically, for each recommendation input considered we have observed

the following:

e Clarity-based predictors are very powerful for rating-based preferences, in par-
ticular, the ItemSimple, IRUser, and IRUserltem clarity predictors obtain

strong correlations for most of the recommendation methods.
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e The use of the item space as a contextual variable shows strong correlation
values when the AR methodology is used, but these correlations decrease when
we use unbiased methodologies, which may indicate that this new dimension is
in fact capturing the item popularity and, thus, when the popularity bias is neu-
tralised such predictors show less predictive power. We find a similar situation

with the item clarity and the user space used as the contextual dimension.

e Temporal and log-based versions of the clarity predictor show higher predic-

tion power than the rest of predictors.

e Social-based predictors are not the ones with the strongest correlation regard-
ing the social filtering recommenders in this experiment, but the correlation
found is significative and they could serve as a complement to other predictors

based on a different input such as the rating-based.

e The ItemSimple clarity predictor consistently obtains strong correlation values
in most of the datasets where we have analysed it. This is an evidence of the
theoretical power of the user clarity to capture the uncertainty in uset’s tastes,
even when the recommender’s input is different (social filtering recommend-
ers) or when we apply some transformation to the data (frequency-based clarity

with transformation from implicit to explicit).

e As described in the Appendix A.4, most of the correlations presented in this
chapter are stable when other evaluation metrics and correlation coefficients

are used.

In the Recommender Systems field there are, however, additional problems due
to subtle differences with respect to the common settings and experimental assump-
tions in Information Retrieval. Since we aim to predict the performance of a recom-
mender, we have to be sure that we are using an unbiased performance metric, and
its subsequent evaluation methodology. As we analysed in Chapter 4 there are at least
two biases in the evaluation of recommender systems which may distort the results:
data sparsity and item popularity. Thus, in this chapter we have computed correla-
tions between the output of the predictors and the evaluation metrics using different
evaluation methodologies, in order to analyse how sensitive the different proposed
predictors are to these biases. Interestingly, although the correlations may change
drastically when different evaluation methodologies are considered, most of the per-
formance predictors still obtain good correlations. In particular, this result evidences
that our proposed predictor are not so prone to the analysed biases like other simple
predictors.

Finally, in Figure 6.3 we summarise the correlations found for the proposed pre-
dictors in each dimension — ratings, logs, and social. We have selected the most rep-

resentative evaluation methodology (AR for rating and social data, and 1R for log
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6.3. Heatmap of the correlation values between a subset of predictors and

recommenders, using the most representative methodologies for the three considered spaces.

data) and a subset of the evaluated predictors and recommenders from each experi-

ment, where the same information presented in Table 6.7, Table 6.14, and Table 6.17

(except for the average and median correlation values) is depicted in a more visual

form. In particular, we may observe that predictors in MovieLens seem to be more

redundant since the correlations are too similar.
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From the figure we may also observe that in Last.fm and CAMRa datasets such
redundancy is much lower and the predictors are quite different. Moreover, the first
column and row (from the bottom) represent the recommender and predictor base-
lines, which serve as references from where the correlations should be analysed. In
the three cases we can observe that most of the predictors obtain larger (darker) val-
ues than the count predictor. In the first case (rating-based predictors), however, it is
clear that the correlation depends more on the recommender and less on the actual

predictor.

6.6 Conclusions

We have proposed adaptations of query performance techniques from ad-hoc In-
formation Retrieval to define performance predictors in Recommender Systems.
Taking inspiration in the query predictor known as query clarity, we have defined and
elaborated in the Recommender Systems domain several predictive models according
to different formulations and assumptions. Furthermore, we propose performance
predictors from theories and models of Information Theory, Social Graph Theory,
and Information Retrieval based on three types of preference data: rating-based, log-
based, and social-based.

We find several effective schemes with a high predictive power for recommend-
er systems performance. We have proposed different ways for the adaptation of the
query clarity predictor to recommender systems depending on the equivalences be-
tween the involved spaces. The clarity formulation is powerful because of its theo-
retical soundness, which is suitable to different domain-oriented adaptations. Hence,
for rating-based preferences we use different expansions which take into account the
rating values and the items rated by the user. For log-based preferences we exploit
the co-occurrences of the items in the user profile and, more importantly, the tempo-
ral dimension, which allows for more principled functions such as the temporal
Kullback-Leibler divergence or the user’s autocorrelation. Finally, for social-based
preferences we exploit the user’s social network and different graph metrics are used
apart from the user clarity based on the ratings. The results, as summarised in the
previous section, are in general positive and provide evidences that the proposed
functions are able to indeed predict the performance of user or items in recom-
mender systems.

Furthermore, by analysising the behaviour of trivial predictors (such as the count
of ratings in training and test) we have been able to uncover noisy biases or sensitiv-
ity to irrelevant variables in the way performance is measured. Irrelevant and uninter-
esting in the sense that it is not clear that the variations due to these variables really

reflect actual differences in quality. As a result, we have used unbiased evaluation
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methodologies where non trivial predictors still obtain positive results with respect to
performance correlation.

As a side-effect, our study introduces an interesting revision of the gray sheep
user concept. A simplistic interpretation of the gray sheep intuition would suggest
that users with a too unusual behavior are a difficult target for recommendations. It
appears however in our study that, on the contrary, users who somewhat distinguish
themselves from the main trends in the community are easier to give well-performing
recommendations. This suggests that perhaps the right characterisation of a gray
sheep user might be one who has scarce overlap with other users. On the other hand,
the fact that a clear user distinguishes herself from the aggregate trends does not
mean that she does not have a sufficiently strong neighbourhood of similar users. In
particular, this seems to indicate that users who follow mainstream trends are more
difficult to be suggested successful items by a recommender system (at least, by a
personalised one). In Information Retrieval, one can observe a similar trend: more
ambiguous (mixture of topics) queries perform worse than higher-coherence queries
(Cronen-Townsend et al., 2002).

In the future we plan to explore further performance predictors. Specifically, we
are interested in incorporating explicit recommender dependence into the predictors,
so as to better exploit the information managed by the recommender, allowing to the
predictor a smoother adaptation to the recommender performance, and increasing
the final correlation between them. Additionally, we are also interested in exploring
alternative item-based predictors apart from those defined in this chapter, and, even-
tually, using other information sources such as log-based preference data and even

the social network of the users who rated a particular item.
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